Tag Archives: bronze bearing

China Best Sales CZPT High Temperature 603 604 605 606 607 608 609 Ceramic Ball PEEK Plastic Bearings bearing bronze

Product Description

Material: Chrome Steel / Stainless Steel / Carbon Steel / Ceramic / POM
OEM Service: Custom bearing’s size, logo, packing. 
Certificate: CE

 

What is small bearing?

Miniature and small-sized ball bearing mean ball bearing, up to 30mm in external diameter. Miniature and small bearings are used for extremely high speeds. These bearings offer a low level of noise, vibration, and frictional torque performance. Miniature and extra-small ball bearings can be sealed by shields or rubber seals to prevent leakage of lubricating grease or entry of dust.

 

What are tiny ball bearings used for?

Bearing Basics applications, miniature precision bearings help reduce friction between parts that need to move independently while effectively saving space in tight applications, such as medical, instrumentation and semiconductor equipment. The balls are available in a range of sizes to meet specific project needs.

 

Where is miniature ball bearings be used? Ball bearings are the most common bearing type and can be found in many every day objects, such skateboards, blenders, bicycles, DVD players and photocopiers. Small wheel bearings are also frequently be used for window and door rollers.This type of bearing is typically used in applications which have a high speed and a low load.

 

About HXHV Small Ball Bearings

The micro bearing dimeension are usually standard as the table below.

But sometimes buyer need the non-standard bearings with custom small bearing size or micro blue bearing.

We supply OEM SERVICE and produce these non-standard bearings with customized size, logo and packing.

miniature plastic ball bearing series:
603 3*9*3mm , 604 4*12*4mm , 605 5*14*5mm , 606 6*17*6mm , 607 7*19*6mm , 608 8*22*7mm , 609 9*24*7mm , 623 3*10*4mm , 624 4*13*5mm  625 5*16*5mm , 626 6*19*6mm ,627 7*22*7mm , 628 8*24*8mm , 629 9*26*8mm , 633 3*13*5mm , 634 6*16*5mm , 635 5*19*6mm.

 

CE CERTIFICATE is very important for european market. And we supply CE certification for our bearings.

 

As for the mini ball bearing material, the inner ring, outside ring, balls and retainer are usually be made of carbon steel, chrome steel or stainless steel. Sometimes the retainer can be made of nylon. The bearings are also be made of special material such as black ceramic Si3N4, White Ceramic ZrO2, and PTFE, PEEK retainers. Sometimes we make the mini bearing with plastic POM rings and glass balls.

 

The micro ball bearings price will be different because of the bearing’s model number, order quantity, precision range, brand and packing, etc.

 

If you need any original brand bearings or bearing with other dimension and model number, please contact us directly.

Please check the bearing’s size below.

Packing:

Universal Packing

Without any logo on bearings or packing.

HXHV Packing

With our brand HXHV on bearings and packing.

Customized Packing

Depends on buyer’s requirements.

Original Brand Packing

Bearing and packing are both original. Please contact us for pictures.

Certificate:
Our bearings comes with CE certificate and our company has been verified by SGS Group. Please contact us for clear certificate photos.

Other Bearings:
We supply different types of ball and roller bearings, slewing bearings, mini bearings, ceramic bearings, Linear guides. 

To get price list of promotion bearings, please contact us. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: Standard
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Radial Bearing
Material: Plastic
Samples:
US$ 0.18/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

What are the Challenges Associated with Noise Reduction in Ball Bearings?

Noise reduction in ball bearings is a crucial consideration, especially in applications where noise levels must be minimized for operational efficiency and user comfort. While ball bearings are designed to operate smoothly, there are several challenges associated with reducing noise in their operation:

  • Vibration:

Vibration generated by the movement of rolling elements and raceways can lead to noise. Even minor irregularities in bearing components or the mounting system can cause vibration that translates into audible noise.

  • Bearing Type and Design:

The type and design of the ball bearing can impact noise generation. For example, deep groove ball bearings are known for their quiet operation, while angular contact bearings can generate more noise due to their higher contact angles.

  • Lubrication:

Improper or inadequate lubrication can result in increased friction and wear, leading to noise. Choosing the right lubricant and maintaining proper lubrication levels are essential for reducing noise in ball bearings.

  • Bearing Clearance and Preload:

Incorrect clearance or preload settings can lead to noise issues. Excessive clearance or inadequate preload can cause the rolling elements to impact the raceways, resulting in noise during rotation.

  • Material and Manufacturing Quality:

The quality of materials and manufacturing processes can affect noise levels. Inconsistent or low-quality materials, improper heat treatment, or manufacturing defects can lead to noise generation during operation.

  • Surface Finish:

The surface finish of the rolling elements and raceways can impact noise. Rough surfaces can generate more noise due to increased friction and potential irregularities.

  • Sealing and Shielding:

Seals and shields that protect bearings can influence noise levels. While they are necessary for contamination prevention, they can also cause additional friction and generate noise.

  • Operating Conditions:

External factors such as temperature, speed, and load can influence noise levels. High speeds or heavy loads can amplify noise due to increased stress on the bearing components.

  • Wear and Deterioration:

As ball bearings wear over time, noise levels can increase. Worn components or inadequate lubrication can lead to more significant noise issues as the bearing operates.

To address these challenges and reduce noise in ball bearings, manufacturers and engineers employ various techniques, such as optimizing design, selecting suitable bearing types, using proper lubrication, maintaining accurate preload settings, and ensuring high-quality materials and manufacturing processes. Noise reduction efforts are essential to improve overall product quality, meet noise regulations, and enhance user experience in various applications.

ball bearing

What are the Differences between Deep Groove Ball Bearings and Angular Contact Ball Bearings?

Deep groove ball bearings and angular contact ball bearings are two common types of ball bearings, each designed for specific applications and load conditions. Here are the key differences between these two types of bearings:

  • Design and Geometry:

Deep Groove Ball Bearings:

Deep groove ball bearings have a simple design with a single row of balls that run along deep raceways in both the inner and outer rings. The rings are usually symmetrical and non-separable, resulting in a balanced load distribution.

Angular Contact Ball Bearings:

Angular contact ball bearings have a more complex design with two rows of balls, oriented at an angle to the bearing’s axis. This arrangement allows for the transmission of both radial and axial loads, making them suitable for combined loads and applications requiring high precision.

  • Load Carrying Capacity:

Deep Groove Ball Bearings:

Deep groove ball bearings are primarily designed to carry radial loads. They can handle axial loads in both directions, but their axial load-carrying capacity is generally lower compared to angular contact ball bearings.

Angular Contact Ball Bearings:

Angular contact ball bearings are specifically designed to handle both radial and axial loads. The contact angle between the rows of balls determines the bearings’ axial load-carrying capacity. They can handle higher axial loads and are commonly used in applications with thrust loads.

  • Contact Angle:

Deep Groove Ball Bearings:

Deep groove ball bearings have no defined contact angle, as the balls move in a deep groove along the raceways. They are primarily designed for radial loads.

Angular Contact Ball Bearings:

Angular contact ball bearings have a specified contact angle between the rows of balls. This contact angle allows them to carry both radial and axial loads and is crucial for their ability to handle combined loads.

  • Applications:

Deep Groove Ball Bearings:

Deep groove ball bearings are commonly used in applications that primarily require radial loads, such as electric motors, pumps, and conveyor systems. They are also suitable for high-speed operation.

Angular Contact Ball Bearings:

Angular contact ball bearings are used in applications where both radial and axial loads are present, such as in machine tools, automotive wheel hubs, and aerospace components. They are especially useful for applications that require precise axial positioning and handling of thrust loads.

  • Limitations:

Deep Groove Ball Bearings:

Deep groove ball bearings are not as suitable for handling significant axial loads and may experience skidding under certain conditions due to their deep raceways.

Angular Contact Ball Bearings:

Angular contact ball bearings can experience increased heat generation and wear at higher speeds due to the contact angle of the balls.

In summary, the design, load-carrying capacity, contact angle, and applications differ between deep groove ball bearings and angular contact ball bearings. Choosing the appropriate type depends on the specific load conditions and requirements of the application.

ball bearing

What are the Different Components that Make up a Typical Ball Bearing?

A typical ball bearing consists of several essential components that work together to reduce friction and support loads. Here are the main components that make up a ball bearing:

  • Outer Ring:

The outer ring is the stationary part of the bearing that provides support and houses the other components. It contains raceways (grooves) that guide the balls’ movement.

  • Inner Ring:

The inner ring is the rotating part of the bearing that attaches to the shaft. It also contains raceways that correspond to those on the outer ring, allowing the balls to roll smoothly.

  • Balls:

The spherical balls are the rolling elements that reduce friction between the inner and outer rings. Their smooth rolling motion enables efficient movement and load distribution.

  • Cage or Retainer:

The cage, also known as the retainer, maintains a consistent spacing between the balls. It prevents the balls from touching each other, reducing friction and preventing jamming.

  • Seals and Shields:

Many ball bearings include seals or shields to protect the internal components from contaminants and retain lubrication. Seals provide better protection against contaminants, while shields offer less resistance to rotation.

  • Lubricant:

Lubrication is essential to reduce friction, wear, and heat generation. Bearings are typically filled with lubricants that ensure smooth movement between the balls and raceways.

  • Flanges and Snap Rings:

In some designs, flanges or snap rings are added to help position and secure the bearing in its housing or on the shaft. Flanges prevent axial movement, while snap rings secure the bearing radially.

  • Raceways:

Raceways are the grooved tracks on the inner and outer rings where the balls roll. The shape and design of the raceways influence the bearing’s load-carrying capacity and performance.

  • Anti-Friction Shield:

In certain high-speed applications, a thin anti-friction shield can be placed between the inner and outer rings to minimize friction and heat generation.

These components work together to enable the smooth rolling motion, load support, and reduced friction that characterize ball bearings. The proper design and assembly of these components ensure the bearing’s optimal performance and longevity in various applications.

China Best Sales CZPT High Temperature 603 604 605 606 607 608 609 Ceramic Ball PEEK Plastic Bearings   bearing bronzeChina Best Sales CZPT High Temperature 603 604 605 606 607 608 609 Ceramic Ball PEEK Plastic Bearings   bearing bronze
editor by CX 2024-05-15

China Custom Wj732 CZPT CZPT CZPT CZPT Precision High Speed 6206 6207 6208 6210 Zz C3 Bicycle Motor Deep Groove Ball Bearing 6201 6202 6203 6204 bearing bronze

Product Description

Product Description

WHY CHOOSE E-ASIA BEARING?

1) 20 years of rich bearing industry export experience
2) ISO & MPA & CE & SGS & BV certified
3) Professional engineers team and Superior machines
4) 1 hour to HangZhou port or ZheJiang port
5) Strict quality inspection (3 steps) before shipment, such as SGS/BV third party certified.

CHOOSE E-ASIA       REFUSED ONE TIME BUSINESS

Deep groove ball bearing 5 88506 88507 88508A 88508 88509 622 62303 62304 62305 62306 62307 62308 62309 62310
Taper roller bearings 35712 35713 35714 35715 35716 35717 35718 35719 35710 35711 35712 35713 35714 35715 35716 35717 35718 35719 35710 35711 35712 35714 35716 35718 35710 35712 35714 35716 35710 35714 30302 30303 30304 30305 30306 30307 30308 3 3 0571 3 0571 3 0 30321 30322 30324 30326 30328 30330 30332 30334 32204 32205 32206 32207 32208 32209 32210 32211 32212 32213 32214 32215 32216 32217 32218 32219 32220 32221 32222 32224 32226 32228 32230 32232 32236 32238 32240 32244 32248 32303 32304 32305 32306 32307 32308 32309 32310 32311 32312 32313 32314 32315 32316 32317 32318 32319 32320 32321 32322 32324 32326 32330 32334 31303 31304 31305 31306 31307 31308 31309 31310 31311 31312 31313 31314 31315 31316 31317 31318 31319 31320 31324 31326 31328 31332 32 325714 320726 325718 53856k 53860
Self-aligning ball bearings
spherical plain bearing GE4E GE5E GE6E GE8E GE10E GE12E GE15ES GE17ES GE20ES GE25ES GE30ES GE35ES GE40ES GE45ES GE50ES GE60ES GE70ES GE80ES GE90ES GE1 110145 120155 130170 140180 150190 165710
Thrust ball bearing 511 234415 234416 234417 234418 234419 234420 234421 234422 234424 234426 234428 234430 234432 234438 234440 234714 234715 234716 234717 234718 234719 234720 234721 234722 234722 347262 347282 347302 347322 347382 34740
Cylindrical Roller Bearings NU313EMA NU2313EMA NU2314EMA NU415EMA NU216EMA NU2216EMA NJ2216EMA NUP2216EMA NU316EMA NU2316EMA NU217EMA NU2217EMA NU317EMA NU2317EMA NJ2317EMA NU218EMA NJ218EMA NU2218EMA NJ2218EMA NUP2218EMA NU318EMA NJ318EMA NU2318EMA NJ2318EMA NU219EMA NJ219EMA NU2219EMA NJ2219EMA NU319EMA NJ319EMA NU2319EMA NJ2319EMA NU220EMA NJ220EMA NU2220EMA NJ2220EMA NU320EMA NJ320EMA NU2320EMA NJ2320EMA NU222EMA NJ222EMA NU2222EMA NJ2222EMA NU322EMA NJ322EMA NU2322EMA NJ2322EMA NU1571MA NU224EMA NJ224EMA NU2224EMA NJ2224EMA NU324EMA NJ324EMA NU2324EMA NJ2324EMA NU1026MA NU226EMA NJ226EMA NU2226EMA NJ2226EMA NU326EMA NJ326EMA NU2326EMA NJ2326EMA NU1571MA NU228EMA NJ228EMA NU2228EMA NJ2228EMA NU328EMA NJ328EMA NU2328EMA NJ2328EMA NU1030MA NU230EMA NJ230EMA NUP230EMA NU2230EMA NJ2230EMA N2230EMB NU330EMA NJ330EMA NU2330EMA NJ2330EMA NU1032MA NU232EMA NJ232EMA NUP232EMA NU2232EMA NJ2232EMA NU332EMA NJ332EMA NU2332EMA NJ2332EMA NU1034MA NU3034EMA NU234EMA NJ234EMA NU2234EMA NJ2234EMA NU334EMA NJ334EMA NU2334EMA NJ2334EMA NU1036MA NU236EMA NJ236EMA NU2236EMA NJ2236EMA NU336EMA NJ336EMA NU2336EM NJ2336EMA NU1038MA NU238EMA NJ238EMA NU2238EMA NJ2238EMA NU338EMA NJ338EMA NU2338EMA NJ2338EMA NU1040MA NU240EMA NJ240EMA NU2240EMA NJ2240EMA NU340EMA NJ340EMA NU2340EMA NJ2340EMA NU1044MA NJ1044MA NU3044EMA NU244EMA NJ244EMA NU2244EMA NJ2244EMA NU344EMA NJ344EMA NU2344EMA NJ2344EMA N2344EMB NU1048MA NU248EMA NJ248EMA NU348EMA NJ348EMA NU2348EMA NJ2348EMA NU1052MA NU3052MA NU252MA NUP252MA NU2252MA NU2352EMA NU1056MA NU1060MA NU1964MA NF2964EMB NU1064MA NU2264MA NF2968EMB NU1068MA NU3068EMA NU3168EMA NU2372EMA NU1072MA NU1076MA NJ2980EMA NU1080MA NU2080EMA NF2984EMB NU1088MA NU2088EMA NU3188EMA NJ2892EMA NF2992EMB NU3192EMA NU1096EMA NJ1096EMA NU31/500EMA NU18/560MA NU30/600EMA NU20/630EMA NU20/670EMA NU20/670EMA NU30/670EMA NJ28/710EMA NJ29/710MA NU20/750EMA NU20/800EMA NU20/850EMA NU39/900EMA NU20/900EMA NJ18/1120EMA105RU32 105RN32 105RJ32 105RF32 105RT32 170RU51 170RN51 170RJ51 170RF51 170RT51 170RU91 170RN91 170RJ91 170RF91 170RT91 170RU93 170RN93 170RJ93 170RF93 170RT93 180RU51 180RN51 180RJ51 180RF51 180RT51 180RU91 180RN91 180RJ91 180RF91 180RT91 190RU91 190RN91 190RJ91 190RF91 190RT91 190RU92 190RN92 190RJ92 190RF92 190RT92 200RU91 200RN91 200RJ91 200RF91 200RT91 200RU92 200RN92 200RJ92 200RF92 200RT92 210RU92 210RN92 210RJ92 210RF92 210RT92 220RU51 220RN51 220RJ51 220RF51 220RT51 220RU91 220RN91 220RJ91 220RF91 220RT91 220RU92 220RN92 220RJ92 220RF92 220RT92 240RU91 240RN91 240RJ91 240RF91 240RT91 250RU91 250RN91 250RJ91 250RF91 250RT91NCF2922V NCF2924V NCF2926V NCF2928V NCF2930V NCF2932V NCF2934V NCF2936V NCF2938V NCF1840V NCF2940V NCF1844V NCF2944V NCF1852V NCF2952V NCF2960V NCF1864V NCF2964V NCF1868V NCF1876V NCF2976V NCF1880V NCF1884V NCF1888V NCF1892V NCF2992V NCF2996V NCF18/500V NCF29/500V NCF18/530V NCF18/560V NCF18/600V NCF18/630V NCF18/670V NCF18/710V NCF18/750V NCF18/800VNNU4930MAW33 NNU4932MAW33 NNU4934MAW33 NNU4936MAW33 NNU4938MAW33 NNU4940MAW33 NNU4140MAW33 NNU4944MAW33 NNU4144MAW33 NNU4948MAW33 NNU4148MAW33 NNU4952MAW33 NNU4152MAW33 NNU4956MAW33 NNU4156MAW33 NNU4960MAW33 NNU4160MAW33 NNU4964MAW33 NNU4164MAW33 NNU4968MAW33 NNU4068MAW33 NNU4168MAW33 NNU4972MAW33 NNU4072MAW33 NNU4172MAW33 NNU4976MAW33 NNU4076MAW33 NNU4176MAW33 NNU4980MAW33 NNU4080MAW33 NNU4180MAW33 NNU4984MAW33 NNU4084MAW33 NNU4184MAW33 NNU4988MAW33 NNU4088MAW33 NNU4188MAW33 NNU4992MAW33 NNU4092MAW33 NNU4192MAW33 NNU4996MAW33 NNU4096MAW33 NNU4196MAW33 NNU49/500MAW33 NNU40/500MAW33 NNU49/530MAW33 NNU40/530MAW33 NNU49/560MAW33 NNU49/600MAW33 NNU49/630MAW33 NNU49/670MAW33 NNU40/670MAW33 NNU49/710MAW33 NNU49/750MAW33 NNU49/800MAW33 NNU49/850MAW33 NNU49/900MAW33
 

Company Profile

        E-Asia was set up in 1996 and located at HangZhou, a beautiful city in China. Our company is bearing manufacturer and NSK CZPT CZPT CZPT CZPT HRB LYC NACHI C&U bearing distributor. We also provide OEM beaings.Since it was first established, E-AISA was dedicated in research, development and manufacture of bearings. Now, E-AISA has become main and 1 of the first grade suppliers of all kinds of bearings.
          Our products include: Deep Groove Ball Bearings, Self-aligning Ball Bearings, Spherical Bearings, Tapered Roller Bearings,Cylindrical Roller Bearings, Needle Roller Bearings, Self-aligning Roller Bearings, Angular Contact Ball Bearings, Thrust Ball Bearings and Trust Roller Bearings and Special Bearings.
        E-Asia is a backbone enterprise for bearing production in China. With an area of 60, 000 square meters, more than 260 sets devices and machines, and around 200 employees, our company annually turns out more than 6 million sets bearings.

        Our Bearings are exported to the USA, Canada, UK, Germany, Poland, Italy, Russia, the Middle East, Africa and other countries and regions of the world. E-Asia Bearing Co. Ltd. Is committed to the introduction of high-quality bearing products. Our company have more than 200 employees.
        Our brands include ZWZ bearings, CZPT bearings, CZPT bearings, CZPT bearings, CZPT bearings, CZPT bearings and so forth.

 
Our belief is “Specialization is quality; Quality is the future. Any product with 0.01% defect is 100% reject” is our quality policy.

Packaging & Shipping

FAQ

1.What is the minimum order quantity for this product?
Can be negotiated, we will try our best to meet customer needs.Our company is mainly based on wholesale sales, most customers’orders are more than 1 ton.

2.What is your latest delivery time?
Most orders will be shipped within 3-5 days of payment being received.

3.Does your company have quality assurance?
Yes, for 2 years.

4.What is the competitiveness of your company’s products compared to other companies?
High precision, high speed, low noise.

5.What are the advantages of your company’s services compared to other companies?
Answer questions online 24 hours a day, reply in a timely manner, and provide various documents required by customers for customs clearance or sales. 100% after-sales service.

6.Which payment method does your company support?
Do our best to meet customer needs, negotiable.

7.How to contact us quickly?
Please send us an inquiry or message and leave your other contact information, such as phone number, account or account, we will contact you as soon as possible and provide the detailed information you need.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Auto Clutch Bearing
Material: Chrome Steel
Tolerance: P5
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

ball bearing

What are the Materials Typically Used in Manufacturing Ball Bearings and Their Advantages?

Ball bearings are manufactured using a variety of materials, each chosen for its specific properties and advantages in various applications. Here are some commonly used materials in ball bearing manufacturing and their respective benefits:

  • High-Carbon Chrome Steel (AISI 52100):

This is the most common material used for ball bearing manufacturing. It offers excellent hardness, wear resistance, and fatigue strength. High-carbon chrome steel bearings are suitable for a wide range of applications, from industrial machinery to automotive components.

  • Stainless Steel (AISI 440C, AISI 304, AISI 316):

Stainless steel bearings are corrosion-resistant and suitable for applications where moisture, chemicals, or exposure to harsh environments are concerns. AISI 440C offers high hardness and corrosion resistance, while AISI 304 and AISI 316 provide good corrosion resistance and are often used in food and medical industries.

  • Ceramic:

Ceramic bearings use silicon nitride (Si3N4) or zirconia (ZrO2) balls. Ceramic materials offer high stiffness, low density, and excellent resistance to corrosion and heat. Ceramic bearings are commonly used in high-speed and high-temperature applications, such as in aerospace and racing industries.

  • Plastic (Polyamide, PEEK):

Plastic bearings are lightweight and offer good corrosion resistance. Polyamide bearings are commonly used due to their low friction and wear properties. Polyether ether ketone (PEEK) bearings provide high-temperature resistance and are suitable for demanding environments.

  • Bronze:

Bronze bearings are often used in applications where self-lubrication is required. Bronze has good thermal conductivity and wear resistance. Bearings made from bronze are commonly used in machinery requiring frequent starts and stops.

  • Hybrid Bearings:

Hybrid bearings combine steel rings with ceramic balls. These bearings offer a balance between the advantages of both materials, such as improved stiffness and reduced weight. Hybrid bearings are used in applications where high speeds and low friction are essential.

  • Specialty Alloys:

For specific applications, specialty alloys may be used to meet unique requirements. For example, bearings used in extreme temperatures or corrosive environments may be made from materials like titanium or hastelloy.

  • Coated Bearings:

Bearings may also be coated with thin layers of materials like diamond-like carbon (DLC) or other coatings to enhance performance, reduce friction, and improve wear resistance.

The choice of material depends on factors such as application requirements, operating conditions, load, speed, and environmental factors. Selecting the right material is essential for ensuring optimal bearing performance, longevity, and reliability in diverse industries and applications.

ball bearing

How do Miniature Ball Bearings Differ from Standard-sized Ones, and Where are They Commonly Used?

Miniature ball bearings, as the name suggests, are smaller in size compared to standard-sized ball bearings. They have distinct characteristics and are designed to meet the unique requirements of applications that demand compactness, precision, and efficient rotation in confined spaces. Here’s how miniature ball bearings differ from standard-sized ones and where they are commonly used:

  • Size:

The most noticeable difference is their size. Miniature ball bearings typically have outer diameters ranging from a few millimeters to around 30 millimeters, while standard-sized ball bearings have larger dimensions suitable for heavier loads and higher speeds.

  • Load Capacity:

Due to their smaller size, miniature ball bearings have lower load-carrying capacities compared to standard-sized bearings. They are designed for light to moderate loads and are often used in applications where precision and compactness are prioritized over heavy load support.

  • Precision:

Miniature ball bearings are known for their high precision and accuracy. They are manufactured to tighter tolerances, making them suitable for applications requiring precise motion control and low levels of vibration.

  • Speed:

Miniature ball bearings can achieve higher speeds than standard-sized bearings due to their smaller size and lower mass. This makes them ideal for applications involving high-speed rotation.

  • Friction and Efficiency:

Miniature ball bearings generally have lower friction due to their smaller contact area. This contributes to higher efficiency and reduced heat generation in applications that require smooth and efficient motion.

  • Applications:

Miniature ball bearings find applications in various industries and sectors:

  • Electronics and Consumer Devices:

They are used in small motors, computer disk drives, printers, and miniature fans, where space is limited but precise motion is essential.

  • Medical and Dental Equipment:

Miniature bearings are used in medical devices such as surgical instruments, dental handpieces, and diagnostic equipment due to their precision and compactness.

  • Robotics and Automation:

Miniature ball bearings are integral to robotic arms, miniature conveyors, and automation systems, enabling precise movement in confined spaces.

  • Aerospace and Defense:

They are used in applications like UAVs (drones), aerospace actuators, and satellite components where size and weight constraints are critical.

  • Optics and Instrumentation:

Miniature bearings play a role in optical instruments, cameras, and measuring devices, providing smooth rotation and accurate positioning.

Overall, miniature ball bearings are specialized components designed for applications where space, precision, and efficient rotation are paramount. Their compactness and high precision make them crucial in various industries requiring reliable motion control in limited spaces.

ball bearing

What is a Ball Bearing and How does it Function in Various Applications?

A ball bearing is a type of rolling-element bearing that uses balls to reduce friction between moving parts and support radial and axial loads. It consists of an outer ring, an inner ring, a set of balls, and a cage that separates and maintains a consistent spacing between the balls. Here’s how ball bearings function in various applications:

  • Reduction of Friction:

Ball bearings function by replacing sliding friction with rolling friction. The smooth, spherical balls minimize the contact area between the inner and outer rings, resulting in lower friction and reduced heat generation.

  • Radial and Axial Load Support:

Ball bearings are designed to support both radial loads (forces perpendicular to the shaft’s axis) and axial loads (forces parallel to the shaft’s axis). The distribution of balls within the bearing ensures load-carrying capacity in multiple directions.

  • Smooth Rotational Movement:

Ball bearings facilitate smooth and precise rotational movement. The rolling motion of the balls allows for controlled and continuous rotation with minimal resistance.

  • Applications in Machinery:

Ball bearings are used in a wide range of machinery and equipment, including motors, generators, gearboxes, conveyors, and fans. They enable the efficient transfer of motion while reducing wear and energy losses.

  • Automotive Industry:

Ball bearings are extensively used in automobiles for various applications, including wheel hubs, transmission systems, steering mechanisms, and engine components. They provide reliability and durability in challenging automotive environments.

  • Industrial Machinery:

In industrial settings, ball bearings support rotating shafts and ensure the smooth operation of equipment such as pumps, compressors, and machine tools.

  • High-Speed Applications:

Ball bearings are suitable for high-speed applications due to their low friction and ability to accommodate rapid rotation. They are used in applications like electric motors and aerospace components.

  • Precision Instruments:

For precision instruments, such as watches, cameras, and medical devices, ball bearings provide accurate rotational movement and contribute to the overall performance of the instrument.

  • Variety of Sizes and Types:

Ball bearings come in various sizes, configurations, and materials to suit different applications. Different types include deep groove ball bearings, angular contact ball bearings, thrust ball bearings, and more.

In summary, ball bearings are essential components in a wide range of applications where smooth rotation, load support, and reduced friction are critical. Their versatility, reliability, and efficiency make them indispensable in industries spanning from automotive to industrial machinery to precision instruments.

China Custom Wj732 CZPT CZPT CZPT CZPT Precision High Speed 6206 6207 6208 6210 Zz C3 Bicycle Motor Deep Groove Ball Bearing 6201 6202 6203 6204   bearing bronzeChina Custom Wj732 CZPT CZPT CZPT CZPT Precision High Speed 6206 6207 6208 6210 Zz C3 Bicycle Motor Deep Groove Ball Bearing 6201 6202 6203 6204   bearing bronze
editor by CX 2024-05-07

China Good quality OEM 6800 2RS, 2rz, Zz, 2z, High Quality Deep Groove Ball Bearing bearing bronze

Product Description

Product Detail

Deep groove ball bearings (GB/T 276-2003) The original list of radial ball bearings is the most widely used rolling bearing. It is characterized by small frictional resistance and high speed. It can be used on parts that bear radial loads or joint loads that act simultaneously in radial and axial directions, and can also be used on parts that bear axial loads, such as small-power motors, Automotive and tractor gearboxes, machine tool gearboxes, general machines, tools, etc.

Model
Product Detail

model 6201-6208
inner size 12mm
outer size 32mm
width 10mm
weight 0.04kg

Company Profile
Haisai bearing is a regular model industrial manufacturing enterprise integrating bearing product research and development, design, manufacturing, import and export trade. The company was founded in 1998, covers an area of more than 90,000 square meters, plant area of more than 20,000 square meters, more than 200 employees, more than 20 technical engineers, has passed the international/SO9001:2008,1SO/TS16949:2009 and other quality management system certification. In addition, we have 2 factories (located in ZheJiang and HangZhou respectively) and a trading company. We have completed the high-speed forging of bearing steel dock, automatic high-precision grinding, cryoquenching, unitized automatic constant temperature grinding, intelligent assembly and so on, complete profession production. The product size from 30mm-750mm covers single and double row tapered roller bearing, British garden taper roller bearing, deep groove ball bearing, stainless steel shaft reducer special bearings, agricultural equipment bearings, a total of more than 2500 specifications of products.
We have a professional team of excellent quality, the technical center is equipped with all kinds of testing machines, high-precision testing instruments,material analysis instruments and more than 60 sets, for users to design develop, trial-produce all kinds of special purpose bearings, and do our best to provide high-end customers around the world with the best solutions and good after-sales service!
We has many years of experience in the industrial field of bearing supporting and industrial service, the products are exported to the United States, Germany, Italy, France, the Czech Republic, Russia and other European and American countries and supporting enterprises. We both at home and abroad enjoy a good business reputation!
We promise to be responsible for every set of bearings and industrial products sold! Make every customer satisfied, is our constant pursuit!
Company Detail
Digital Workshop

Stock

Packing
Certification

Our company is a large-scale industrial manufacturing enterprise integrating bearing product research and development, design, manufacturing, import and export trade. The company was established in 1998, covering an area of more than 90,000 square meters, with a workshop area of more than 20,000 square meters, more than 200 employees, and more than 20 technical engineers. It has passed international/SO9001: 2008, 1SO/TS16949:2009 and other quality management system certifications.
The company has length measuring instruments, profilers, roundness meters, hardness meters, 3D imagers, vibration meters, flaw detectors, metallographic microscopes and other inspection instruments to meet the requirements of product performance testing, 100% raw material ultrasonic flaw detection, size and shape accuracy inspection, and large-scale bearing magnetic particle flaw detection.
The company has a professional team with excellent quality. The technical center is equipped with more than 60 sets of various testing machines, high-precision testing instruments, and material analysis instruments. It can design, develop, and trial-manufacture various special-purpose bearings for users.
 

Transport
Q&A

Q:What’s your after-sales service and warranty?
A: We promise to bear the following responsibilities when defective products were found:
1. Replacements would be sent with goods of your next order;
2. Refund for defective products if customers require.

Q:Do you accept ODM&OEM orders?
A: Yes, we provide ODM&OEM services to worldwide customers, we also customize OEM box and packing as your requirements.

Q:What’s the MOQ?
A: MOQ is 10pcs for standardized products; for customized products, MOQ should be negotiated in advance. There is no MOQ for sample orders.

Q:How long is the lead time?
A: The lead time for sample orders is 3-5 days, for bulk orders is 5-15 days.

Q:Do you offer free samples? 
A: Yes we offer free samples to distributors and wholesalers, however customers should bear freight. We DO NOT offer free samples to end users. 

Q:How to place order?
A: 1. Email us the model, brand and quantity,shipping way of bearings and we will quote our best price for you; 
2. Proforma Invoice made and sent to you as the price agreed by both parts; 
3. Deposit Payment after confirming the PI and we arrange production; 
4. Balance paid before shipment or after copy of Bill of Loading. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Inner Size: 12mm
Outer Size: 32mm
Width: 10mm
Delivery Time: Within 7 Working Days
Payment: T/T
Weight: 0.04kg
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

Can you Provide Examples of Industries where Ball Bearings are Crucial Components?

Ball bearings are essential components in a wide range of industries where smooth motion, load support, and precision are vital. Here are some examples of industries where ball bearings play a crucial role:

  • Automotive Industry:

Ball bearings are used in various automotive applications, including wheel hubs, transmissions, engines, steering systems, and suspension components. They provide reliable rotation and support in both passenger vehicles and commercial vehicles.

  • Aerospace Industry:

In the aerospace sector, ball bearings are found in aircraft engines, landing gear systems, control surfaces, and avionics equipment. Their ability to handle high speeds and precision is vital for aviation safety.

  • Industrial Machinery:

Ball bearings are integral to a wide range of industrial machinery, including pumps, compressors, conveyors, machine tools, printing presses, and textile machinery. They facilitate smooth operation and load distribution in these diverse applications.

  • Medical Equipment:

In medical devices and equipment, ball bearings are used in surgical instruments, imaging equipment, dental tools, and laboratory machinery. Their precision and smooth movement are crucial for accurate diagnostics and treatments.

  • Robotics and Automation:

Ball bearings are key components in robotic arms, automation systems, and manufacturing machinery. They enable precise movement, high-speed operation, and reliable performance in automated processes.

  • Renewable Energy:

Wind turbines and solar tracking systems utilize ball bearings to enable efficient rotation and tracking of the wind blades and solar panels. Ball bearings withstand the dynamic loads and environmental conditions in renewable energy applications.

  • Marine and Shipbuilding:

Ball bearings are used in marine applications such as ship propulsion systems, steering mechanisms, and marine pumps. They withstand the corrosive environment and provide reliable performance in maritime operations.

  • Heavy Equipment and Construction:

In construction machinery like excavators, bulldozers, and cranes, ball bearings support the movement of heavy loads and enable efficient operation in demanding environments.

  • Electronics and Consumer Appliances:

Consumer electronics like electric motors, computer hard drives, and household appliances rely on ball bearings for smooth motion and reliable operation.

  • Oil and Gas Industry:

In oil and gas exploration and extraction equipment, ball bearings are used in drilling rigs, pumps, and processing machinery. They handle the high loads and harsh conditions of this industry.

These examples demonstrate how ball bearings are indispensable components in various industries, contributing to the efficiency, reliability, and functionality of diverse mechanical systems and equipment.

ball bearing

What Precautions should be taken to Prevent Contamination of Ball Bearings in Industrial Settings?

Preventing contamination of ball bearings is essential to ensure their proper function, longevity, and overall performance in industrial settings. Contaminants such as dust, dirt, debris, and particles can significantly impact bearing operation. Here are important precautions to take to prevent contamination of ball bearings:

  • Effective Sealing:

Choose ball bearings with appropriate seals or shields to prevent the ingress of contaminants. Seals provide a physical barrier against dust, moisture, and particles, ensuring the bearing’s interior remains clean.

  • Clean Environment:

Maintain a clean working environment around the machinery and equipment. Regularly clean the surrounding areas to prevent the accumulation of dirt and debris that could enter the bearings.

  • Proper Handling:

Handle bearings with clean hands and use gloves if necessary. Avoid touching the bearing surfaces with bare hands, as natural skin oils can transfer contaminants onto the bearing.

  • Clean Tools and Equipment:

Use clean tools and equipment during installation and maintenance to prevent introducing contaminants. Ensure that tools are properly cleaned before coming into contact with the bearing components.

  • Contamination-Controlled Workstations:

Establish contamination-controlled workstations for bearing handling, installation, and maintenance. These areas should have proper ventilation, filtered air, and minimal exposure to external contaminants.

  • Proper Lubrication:

Use the correct lubricant in appropriate quantities. Lubricants help create a barrier against contaminants and reduce friction. Regularly inspect and replenish lubrication to maintain its effectiveness.

  • Regular Inspections:

Implement a routine inspection schedule to monitor the condition of the bearings. Look for signs of contamination, wear, and damage. Address any issues promptly to prevent further damage.

  • Training and Education:

Train personnel on proper handling, installation, and maintenance practices to minimize the risk of contamination. Educated employees are more likely to take precautions and prevent accidental contamination.

  • Environmental Controls:

In sensitive environments, such as clean rooms or medical facilities, implement strict environmental controls to minimize the presence of contaminants that could affect bearing performance.

  • Regular Cleaning and Maintenance:

Perform regular cleaning and maintenance of machinery and equipment to prevent the buildup of contaminants. Keep bearings protected during maintenance to prevent debris from entering during the process.

  • Selection of Suitable Bearings:

Choose bearings that are specifically designed for the application’s environmental conditions. Some bearings have advanced sealing options or specialized coatings that enhance contamination resistance.

By implementing these precautions, industries can significantly reduce the risk of contamination in ball bearings, ensuring smooth operation, extended bearing life, and enhanced equipment reliability.

ball bearing

What are the Different Components that Make up a Typical Ball Bearing?

A typical ball bearing consists of several essential components that work together to reduce friction and support loads. Here are the main components that make up a ball bearing:

  • Outer Ring:

The outer ring is the stationary part of the bearing that provides support and houses the other components. It contains raceways (grooves) that guide the balls’ movement.

  • Inner Ring:

The inner ring is the rotating part of the bearing that attaches to the shaft. It also contains raceways that correspond to those on the outer ring, allowing the balls to roll smoothly.

  • Balls:

The spherical balls are the rolling elements that reduce friction between the inner and outer rings. Their smooth rolling motion enables efficient movement and load distribution.

  • Cage or Retainer:

The cage, also known as the retainer, maintains a consistent spacing between the balls. It prevents the balls from touching each other, reducing friction and preventing jamming.

  • Seals and Shields:

Many ball bearings include seals or shields to protect the internal components from contaminants and retain lubrication. Seals provide better protection against contaminants, while shields offer less resistance to rotation.

  • Lubricant:

Lubrication is essential to reduce friction, wear, and heat generation. Bearings are typically filled with lubricants that ensure smooth movement between the balls and raceways.

  • Flanges and Snap Rings:

In some designs, flanges or snap rings are added to help position and secure the bearing in its housing or on the shaft. Flanges prevent axial movement, while snap rings secure the bearing radially.

  • Raceways:

Raceways are the grooved tracks on the inner and outer rings where the balls roll. The shape and design of the raceways influence the bearing’s load-carrying capacity and performance.

  • Anti-Friction Shield:

In certain high-speed applications, a thin anti-friction shield can be placed between the inner and outer rings to minimize friction and heat generation.

These components work together to enable the smooth rolling motion, load support, and reduced friction that characterize ball bearings. The proper design and assembly of these components ensure the bearing’s optimal performance and longevity in various applications.

China Good quality OEM 6800 2RS, 2rz, Zz, 2z, High Quality Deep Groove Ball Bearing   bearing bronzeChina Good quality OEM 6800 2RS, 2rz, Zz, 2z, High Quality Deep Groove Ball Bearing   bearing bronze
editor by CX 2024-05-03

China Best Sales 6300 6301 6302 6303 6304 Zz 2RS Motor Ball Bearing bearing bronze

Product Description

What is a deep groove ball bearing

Ball bearings are composed of 1 or more rows of balls, placed between 2 coaxial rings. High resistance, they are particularly suitable for high speeds.
That’s why we find them in many mechanical applications. Ball bearings can be with or without seals (water and dust). Ball bearings with integrated seals contain a lubricant that is effective for life. These do not require maintenance.
Our range is also composed of sealed ball bearings with, on both sides, sheet-reinforced acrylonitrile-butadiene rubber (NBR) contact seals. They are supplied ready for assembly and pre-greased.

Deep groove ball bearings are simple in construction as well as easy to operate and maintain. They can run at high speeds and can support both radial and axial loads, furthermore they are robust, versatile and quiet running.

 

 

HangZhou CZPT BEARING Co., Ltd. Was established in 2013, 

Registered “GNYAR” in 2014, registered “MAJC” in 2018, both was received in high-performance praise, and earned high reputation among customers from motorcycle parts, auto parts and embroidery machine spare parts, Power tools, agricultural machine, bicycle, Semiconductor Facilities. Fitness Equipments, Toys, fishing, industrial using design. 

We have developed a group of experienced manufacturers and exporters of bearings to satisfy diffierent industrial requirements from diffierent customers. 

We can supply: 

Deep groove ball bearing single row

 

Metric

-6 19.05 0.75

 

Do you prefer that we remind you ?

Immediate and free call/email back

 

 

 

2nd step: the outside diameter of the bearing

  •  
  • A / Put your bearing on the grid as shown in the diagram.
  •  
  • B / Mark the outline of the outer ring. For more convenience, use a pencil with a fine point.
  •  
  • C / For ease of reading, do not hesitate to draw lines to the axes and then take the measurement.

 

 

 

 

3rd step: the thickness of the bearing

  •  
  • A / In the same way as for the outer diameter and the bore, place your bearing on the edge on the grid as shown in the diagram.
  • B / Draw the outer contour.
  •  
  • C / For ease of reading, do not hesitate to draw lines to the axes and then take the measurement.

 

 

 

 

Conclusion :

You now have 3 measuring elements that will allow you to identify your bearing: the inside diameter (or bore), the outside diameter, and the thickness.

You can postpone these measurements in our bearing search tool on our website

 

You search, we find !

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: Normal
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Radial Bearing
Material: Bearing Steel
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

How does Preload Affect the Performance and Efficiency of Ball Bearings?

Preload is a crucial factor in ball bearing design that significantly impacts the performance, efficiency, and overall behavior of the bearings in various applications. Preload refers to the intentional axial force applied to the bearing’s rolling elements before it is mounted. This force eliminates internal clearance and creates contact between the rolling elements and the raceways. Here’s how preload affects ball bearing performance:

  • Reduction of Internal Clearance:

Applying preload reduces the internal clearance between the rolling elements and the raceways. This eliminates play within the bearing, ensuring that the rolling elements are in constant contact with the raceways. This reduced internal clearance enhances precision and reduces vibrations during operation.

  • Increased Stiffness:

Preloaded bearings are stiffer due to the elimination of internal clearance. This increased stiffness improves the bearing’s ability to handle axial and radial loads with higher accuracy and minimal deflection.

  • Minimized Axial Play:

Preload minimizes or eliminates axial play within the bearing. This is especially important in applications where axial movement needs to be minimized, such as machine tool spindles and precision instruments.

  • Enhanced Rigidity:

The stiffness resulting from preload enhances the bearing’s rigidity, making it less susceptible to deformation under load. This is critical for maintaining precision and accuracy in applications that require minimal deflection.

  • Reduction in Ball Slippage:

Preload reduces the likelihood of ball slippage within the bearing, ensuring consistent contact between the rolling elements and the raceways. This leads to improved efficiency and better load distribution.

  • Improved Running Accuracy:

Preloading enhances the running accuracy of the bearing, ensuring that it maintains precise rotational characteristics even under varying loads and speeds. This is essential for applications requiring high accuracy and repeatability.

  • Optimized Performance at High Speeds:

Preload helps prevent skidding and slipping of the rolling elements during high-speed operation. This ensures that the bearing remains stable, reducing the risk of noise, vibration, and premature wear.

  • Impact on Friction and Heat Generation:

While preload reduces internal clearance and friction, excessive preload can lead to higher friction and increased heat generation. A balance must be struck between optimal preload and minimizing friction-related issues.

  • Application-Specific Considerations:

The appropriate amount of preload depends on the application’s requirements, such as load, speed, accuracy, and operating conditions. Over-preloading can lead to increased stress and premature bearing failure, while under-preloading may result in inadequate rigidity and reduced performance.

Overall, preload plays a critical role in optimizing the performance, accuracy, and efficiency of ball bearings. Engineers must carefully determine the right preload level for their specific applications to achieve the desired performance characteristics and avoid potential issues related to overloading or inadequate rigidity.

ball bearing

What are the Differences between Deep Groove Ball Bearings and Angular Contact Ball Bearings?

Deep groove ball bearings and angular contact ball bearings are two common types of ball bearings, each designed for specific applications and load conditions. Here are the key differences between these two types of bearings:

  • Design and Geometry:

Deep Groove Ball Bearings:

Deep groove ball bearings have a simple design with a single row of balls that run along deep raceways in both the inner and outer rings. The rings are usually symmetrical and non-separable, resulting in a balanced load distribution.

Angular Contact Ball Bearings:

Angular contact ball bearings have a more complex design with two rows of balls, oriented at an angle to the bearing’s axis. This arrangement allows for the transmission of both radial and axial loads, making them suitable for combined loads and applications requiring high precision.

  • Load Carrying Capacity:

Deep Groove Ball Bearings:

Deep groove ball bearings are primarily designed to carry radial loads. They can handle axial loads in both directions, but their axial load-carrying capacity is generally lower compared to angular contact ball bearings.

Angular Contact Ball Bearings:

Angular contact ball bearings are specifically designed to handle both radial and axial loads. The contact angle between the rows of balls determines the bearings’ axial load-carrying capacity. They can handle higher axial loads and are commonly used in applications with thrust loads.

  • Contact Angle:

Deep Groove Ball Bearings:

Deep groove ball bearings have no defined contact angle, as the balls move in a deep groove along the raceways. They are primarily designed for radial loads.

Angular Contact Ball Bearings:

Angular contact ball bearings have a specified contact angle between the rows of balls. This contact angle allows them to carry both radial and axial loads and is crucial for their ability to handle combined loads.

  • Applications:

Deep Groove Ball Bearings:

Deep groove ball bearings are commonly used in applications that primarily require radial loads, such as electric motors, pumps, and conveyor systems. They are also suitable for high-speed operation.

Angular Contact Ball Bearings:

Angular contact ball bearings are used in applications where both radial and axial loads are present, such as in machine tools, automotive wheel hubs, and aerospace components. They are especially useful for applications that require precise axial positioning and handling of thrust loads.

  • Limitations:

Deep Groove Ball Bearings:

Deep groove ball bearings are not as suitable for handling significant axial loads and may experience skidding under certain conditions due to their deep raceways.

Angular Contact Ball Bearings:

Angular contact ball bearings can experience increased heat generation and wear at higher speeds due to the contact angle of the balls.

In summary, the design, load-carrying capacity, contact angle, and applications differ between deep groove ball bearings and angular contact ball bearings. Choosing the appropriate type depends on the specific load conditions and requirements of the application.

ball bearing

What are the Primary Benefits of Using Ball Bearings in Machinery and Equipment?

Ball bearings offer several primary benefits when used in machinery and equipment. Their design and functionality provide advantages that contribute to the efficient and reliable operation of various applications. Here are the key benefits:

  • Reduced Friction:

One of the primary benefits of ball bearings is their ability to minimize friction between moving parts. The rolling motion of the balls reduces the contact area and sliding friction, leading to smoother operation and less energy loss due to frictional heating.

  • Efficient Load Support:

Ball bearings are engineered to support both radial and axial loads, making them versatile for applications with multidirectional forces. This load-bearing capability allows machinery to handle different types of loads while maintaining performance and stability.

  • Smooth Rotation:

Ball bearings enable smooth and precise rotational movement. The rolling motion of the balls provides consistent motion with minimal resistance, ensuring that machinery operates smoothly and without jerks.

  • High-Speed Capability:

Due to their low friction and efficient rolling action, ball bearings are suitable for high-speed applications. They allow machinery and equipment to achieve and maintain high rotational speeds without excessive wear or heat buildup.

  • Reduced Wear and Maintenance:

The reduced friction in ball bearings leads to lower wear on components. This results in longer service intervals and reduced maintenance requirements, saving both time and maintenance costs.

  • Energy Efficiency:

By minimizing friction and reducing energy losses, ball bearings contribute to the overall energy efficiency of machinery. This is particularly important in applications where energy consumption is a concern.

  • Versatility:

Ball bearings come in various types, sizes, and configurations, allowing them to be used in a wide range of machinery and equipment. They can be customized to suit specific application requirements.

  • Reliability and Longevity:

Ball bearings are designed to withstand heavy loads and harsh operating conditions. Their durability and resistance to wear ensure reliable performance and an extended operational life.

  • Quiet Operation:

Ball bearings contribute to quiet machinery operation due to the smooth rolling motion of the balls. This is particularly important in applications where noise reduction is a consideration.

In summary, the primary benefits of using ball bearings in machinery and equipment include reduced friction, efficient load support, smooth rotation, high-speed capability, reduced wear and maintenance, energy efficiency, versatility, reliability, and quiet operation. These benefits collectively enhance the performance and longevity of machinery across various industries.

China Best Sales 6300 6301 6302 6303 6304 Zz 2RS Motor Ball Bearing   bearing bronzeChina Best Sales 6300 6301 6302 6303 6304 Zz 2RS Motor Ball Bearing   bearing bronze
editor by CX 2024-05-02

China Professional Wholesale CZPT Wheel Ball Bearing Gph1210 for CZPT Mounter bearing bronze

Product Description


Wholesale CZPT Wheel Ball Bearing GPH1210 for CZPT Mounter 

Product Description

 

Place of Origin ZheJiang , China (Mainland)
Brand Name FUJI
Model Number GPH1210
Port HangZhou
MOQ 1 piece
Packing Cleaning
Condition New
Shipping Fast air transprot: UPS; DHL; EMS; TNT and Fedex
Delivery time Usual order: 1-7 working days since recived payment
Export experience 17 years 

Detailed Photos

 

Certifications

Packaging & Shipping

Our Advantages

A. 18 years experience, quality guarantee
B. Participate in NEPCON South China Since 2009
C. High quality, low cost
D. Large stock, fast shipping
E. various brands available
F. Customization is acceptable

 

Company Profile

ZheJiang CZPT Automation Equipment Co.,Ltd.” located in Chang’an town, HangZhou, China, which been endowed with “the star township” in China, found in 2016 with 7 years CZPT equipment export experience.

Have close cooperation with OEM factory for your machine need.

Mainly offer Laser marking machine, Laser cutting machine, Laser welding machine, Security monitoring focusing machine, AOI detecting machine, X-RAY, Steel mesh cleaning machine, BGA rework station, 3D paste thickness gauge, CZPT solder paste mixer, Reflow checker, Feeder instrument calibration, SMD components counter, PCB up and down board machine, Solder paste printing machine, Conveyor and nozzle cleaning machine, welcome send inquiry to Anna.

FAQ

* What products you sell?
Our company deal in the following products:
SMT equipment and accessories: Feeders, Feeder parts, CZPT nozzles, nozzle cleaning machine, nozzle filter, CZPT belt, bearing, mortor, cylinder, sensor, CZPT grease, grease gun etc.

*What brands of parts you have?
We have Fuji, Juki, Yamaha, Samsung, Panaconic, Siemens, Universal, etc.

* Do your company offer customized services?
Yes, production time 1-7 working days.

*How about the quality of your CZPT pick and place parts?
Xihu (West Lake) Dis. established in 2005 with more than 18 years experience, quality guarantee, the products are popular at home and abroad.

*Are you a reliable cooperator?
Yes. We specialized in CZPT parts over 18 years in HangZhou China. We participated in NEPCON HangZhou and ZheJiang every year since 2009.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Bearing Structure: Solid Bearing
Type of Lubricant: Solid-Lubricated Bearing
Lubricant & Load: Hydrostatic Bearing
Bushing Material: Self-Lubrication
Bearing Direction: Radial
Lubricating Way: Maintenance-Free Bearing
Customization:
Available

|

Customized Request

ball bearing

How does Preload Affect the Performance and Efficiency of Ball Bearings?

Preload is a crucial factor in ball bearing design that significantly impacts the performance, efficiency, and overall behavior of the bearings in various applications. Preload refers to the intentional axial force applied to the bearing’s rolling elements before it is mounted. This force eliminates internal clearance and creates contact between the rolling elements and the raceways. Here’s how preload affects ball bearing performance:

  • Reduction of Internal Clearance:

Applying preload reduces the internal clearance between the rolling elements and the raceways. This eliminates play within the bearing, ensuring that the rolling elements are in constant contact with the raceways. This reduced internal clearance enhances precision and reduces vibrations during operation.

  • Increased Stiffness:

Preloaded bearings are stiffer due to the elimination of internal clearance. This increased stiffness improves the bearing’s ability to handle axial and radial loads with higher accuracy and minimal deflection.

  • Minimized Axial Play:

Preload minimizes or eliminates axial play within the bearing. This is especially important in applications where axial movement needs to be minimized, such as machine tool spindles and precision instruments.

  • Enhanced Rigidity:

The stiffness resulting from preload enhances the bearing’s rigidity, making it less susceptible to deformation under load. This is critical for maintaining precision and accuracy in applications that require minimal deflection.

  • Reduction in Ball Slippage:

Preload reduces the likelihood of ball slippage within the bearing, ensuring consistent contact between the rolling elements and the raceways. This leads to improved efficiency and better load distribution.

  • Improved Running Accuracy:

Preloading enhances the running accuracy of the bearing, ensuring that it maintains precise rotational characteristics even under varying loads and speeds. This is essential for applications requiring high accuracy and repeatability.

  • Optimized Performance at High Speeds:

Preload helps prevent skidding and slipping of the rolling elements during high-speed operation. This ensures that the bearing remains stable, reducing the risk of noise, vibration, and premature wear.

  • Impact on Friction and Heat Generation:

While preload reduces internal clearance and friction, excessive preload can lead to higher friction and increased heat generation. A balance must be struck between optimal preload and minimizing friction-related issues.

  • Application-Specific Considerations:

The appropriate amount of preload depends on the application’s requirements, such as load, speed, accuracy, and operating conditions. Over-preloading can lead to increased stress and premature bearing failure, while under-preloading may result in inadequate rigidity and reduced performance.

Overall, preload plays a critical role in optimizing the performance, accuracy, and efficiency of ball bearings. Engineers must carefully determine the right preload level for their specific applications to achieve the desired performance characteristics and avoid potential issues related to overloading or inadequate rigidity.

ball bearing

What Role do Seals and Shields Play in Protecting Ball Bearings from Dirt and Debris?

Seals and shields are critical components of ball bearings that play a crucial role in protecting them from dirt, debris, moisture, and contaminants in various applications. These protective features help maintain the integrity of the bearing’s internal components and ensure reliable operation. Here’s how seals and shields contribute to bearing protection:

  • Contaminant Exclusion:

Seals and shields create a physical barrier between the external environment and the bearing’s interior. They prevent dust, dirt, water, and other contaminants from entering the bearing and coming into contact with the rolling elements and raceways.

  • Lubrication Retention:

Seals and shields help retain lubrication within the bearing. They prevent the lubricant from escaping and contaminants from entering, ensuring that the bearing remains properly lubricated for smooth operation and reduced friction.

  • Corrosion Prevention:

Seals and shields protect bearing components from exposure to moisture and corrosive substances. By preventing moisture ingress, they help extend the bearing’s lifespan by minimizing the risk of corrosion-related damage.

  • Extended Bearing Life:

Seals and shields contribute to the overall longevity of the bearing by reducing wear and damage caused by contaminants. They help maintain a clean internal environment, which promotes proper rolling contact and minimizes the risk of premature failure.

  • Enhanced Performance in Harsh Environments:

In applications exposed to harsh conditions, such as outdoor machinery or industrial settings, seals and shields are vital. They protect bearings from abrasive particles, chemicals, and extreme temperatures, ensuring reliable performance despite challenging conditions.

  • Noise and Vibration Reduction:

Seals and shields can help reduce noise and vibration generated by the bearing. They provide additional damping and stability, contributing to smoother operation and enhanced user comfort in noise-sensitive applications.

  • Customized Protection:

Manufacturers offer a variety of seal and shield designs to suit different application requirements. Some seals provide higher levels of protection against contamination, while others are designed for high-speed or high-temperature environments.

  • Trade-Offs:

While seals and shields offer significant benefits, they can also introduce some friction due to contact with the bearing’s inner or outer ring. Engineers must balance the level of protection with the desired operating characteristics, considering factors like friction, speed, and environmental conditions.

Overall, seals and shields play a vital role in maintaining the integrity and performance of ball bearings. By effectively preventing contaminants from entering and preserving lubrication, they ensure the smooth and reliable operation of machinery and equipment in a wide range of applications.

ball bearing

What is a Ball Bearing and How does it Function in Various Applications?

A ball bearing is a type of rolling-element bearing that uses balls to reduce friction between moving parts and support radial and axial loads. It consists of an outer ring, an inner ring, a set of balls, and a cage that separates and maintains a consistent spacing between the balls. Here’s how ball bearings function in various applications:

  • Reduction of Friction:

Ball bearings function by replacing sliding friction with rolling friction. The smooth, spherical balls minimize the contact area between the inner and outer rings, resulting in lower friction and reduced heat generation.

  • Radial and Axial Load Support:

Ball bearings are designed to support both radial loads (forces perpendicular to the shaft’s axis) and axial loads (forces parallel to the shaft’s axis). The distribution of balls within the bearing ensures load-carrying capacity in multiple directions.

  • Smooth Rotational Movement:

Ball bearings facilitate smooth and precise rotational movement. The rolling motion of the balls allows for controlled and continuous rotation with minimal resistance.

  • Applications in Machinery:

Ball bearings are used in a wide range of machinery and equipment, including motors, generators, gearboxes, conveyors, and fans. They enable the efficient transfer of motion while reducing wear and energy losses.

  • Automotive Industry:

Ball bearings are extensively used in automobiles for various applications, including wheel hubs, transmission systems, steering mechanisms, and engine components. They provide reliability and durability in challenging automotive environments.

  • Industrial Machinery:

In industrial settings, ball bearings support rotating shafts and ensure the smooth operation of equipment such as pumps, compressors, and machine tools.

  • High-Speed Applications:

Ball bearings are suitable for high-speed applications due to their low friction and ability to accommodate rapid rotation. They are used in applications like electric motors and aerospace components.

  • Precision Instruments:

For precision instruments, such as watches, cameras, and medical devices, ball bearings provide accurate rotational movement and contribute to the overall performance of the instrument.

  • Variety of Sizes and Types:

Ball bearings come in various sizes, configurations, and materials to suit different applications. Different types include deep groove ball bearings, angular contact ball bearings, thrust ball bearings, and more.

In summary, ball bearings are essential components in a wide range of applications where smooth rotation, load support, and reduced friction are critical. Their versatility, reliability, and efficiency make them indispensable in industries spanning from automotive to industrial machinery to precision instruments.

China Professional Wholesale CZPT Wheel Ball Bearing Gph1210 for CZPT Mounter   bearing bronzeChina Professional Wholesale CZPT Wheel Ball Bearing Gph1210 for CZPT Mounter   bearing bronze
editor by CX 2024-04-25

China supplier Thin Section Ball Bearing XP0 Cp0 Ar0 bearing bronze

Product Description

Thin section ball bearing XP0 CP0 AR0:
We offer standard, specialty and customer designed thin wall bearings. These are available in 3 types: Radial, angular and four-point contact with or without seals.
These thin section ball bearing are used in the aerospace industry, robots, textile machines, instruments, medical equipments and so on.

Thin wall bearing specification:
1. Cross section: 3/16″-1″
2. Bore diameter: 1″-40″
3. Ball diameter: 3/32″-1/2″
4. Type: Redial contact, Angular contact, Four-Point contact.

Feature:
1. Precision tolerance for high running accuracy.
2. Material: Stainless steel and 52100 chrome steel.
3. Raceway: Smooth surface reducing internal friction and vibration.
4. High quality steel balls.
5. Various designed retainers to meet performance needs.
 

 

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Ball Bearings
The Number of Rows: Single
Outer Dimension: 1"-40"
Material: Bearing Steel
Spherical: Non-Aligning Bearings
Load Direction: Radial Bearing
Customization:
Available

|

Customized Request

ball bearing

Can you Provide Examples of Industries where Ball Bearings are Crucial Components?

Ball bearings are essential components in a wide range of industries where smooth motion, load support, and precision are vital. Here are some examples of industries where ball bearings play a crucial role:

  • Automotive Industry:

Ball bearings are used in various automotive applications, including wheel hubs, transmissions, engines, steering systems, and suspension components. They provide reliable rotation and support in both passenger vehicles and commercial vehicles.

  • Aerospace Industry:

In the aerospace sector, ball bearings are found in aircraft engines, landing gear systems, control surfaces, and avionics equipment. Their ability to handle high speeds and precision is vital for aviation safety.

  • Industrial Machinery:

Ball bearings are integral to a wide range of industrial machinery, including pumps, compressors, conveyors, machine tools, printing presses, and textile machinery. They facilitate smooth operation and load distribution in these diverse applications.

  • Medical Equipment:

In medical devices and equipment, ball bearings are used in surgical instruments, imaging equipment, dental tools, and laboratory machinery. Their precision and smooth movement are crucial for accurate diagnostics and treatments.

  • Robotics and Automation:

Ball bearings are key components in robotic arms, automation systems, and manufacturing machinery. They enable precise movement, high-speed operation, and reliable performance in automated processes.

  • Renewable Energy:

Wind turbines and solar tracking systems utilize ball bearings to enable efficient rotation and tracking of the wind blades and solar panels. Ball bearings withstand the dynamic loads and environmental conditions in renewable energy applications.

  • Marine and Shipbuilding:

Ball bearings are used in marine applications such as ship propulsion systems, steering mechanisms, and marine pumps. They withstand the corrosive environment and provide reliable performance in maritime operations.

  • Heavy Equipment and Construction:

In construction machinery like excavators, bulldozers, and cranes, ball bearings support the movement of heavy loads and enable efficient operation in demanding environments.

  • Electronics and Consumer Appliances:

Consumer electronics like electric motors, computer hard drives, and household appliances rely on ball bearings for smooth motion and reliable operation.

  • Oil and Gas Industry:

In oil and gas exploration and extraction equipment, ball bearings are used in drilling rigs, pumps, and processing machinery. They handle the high loads and harsh conditions of this industry.

These examples demonstrate how ball bearings are indispensable components in various industries, contributing to the efficiency, reliability, and functionality of diverse mechanical systems and equipment.

ball bearing

Are there any Industry Standards or Certifications that Ball Bearings should Meet?

Yes, there are several industry standards and certifications that ball bearings should meet to ensure their quality, performance, and reliability. These standards help manufacturers, engineers, and customers assess the suitability of bearings for specific applications. Some of the key standards and certifications for ball bearings include:

  • ISO Standards:

The International Organization for Standardization (ISO) has developed a series of standards related to ball bearings. ISO 15 defines dimensions, boundary dimensions, and tolerances for radial bearings. ISO 281 specifies dynamic load ratings and calculation methods for bearings’ life calculations.

  • ABEC (Annular Bearing Engineering Committee) Ratings:

ABEC ratings are commonly used in North America to indicate the precision and performance of ball bearings. Ratings range from ABEC 1 (lowest precision) to ABEC 9 (highest precision). However, it’s important to note that ABEC ratings focus primarily on dimensional tolerances and do not encompass all aspects of bearing quality.

  • DIN Standards:

The German Institute for Standardization (Deutsches Institut für Normung, DIN) has published various standards related to ball bearings. DIN 625 covers dimensions for deep groove ball bearings, while DIN 616 provides guidelines for precision angular contact ball bearings.

  • JIS (Japanese Industrial Standards):

JIS standards are used in Japan and internationally to define the characteristics and dimensions of various products, including ball bearings. JIS B 1512 outlines the classification and dimensions of rolling bearings.

  • ASTM (American Society for Testing and Materials) Standards:

ASTM has standards that cover various aspects of bearing testing, performance, and materials. ASTM F2215, for instance, specifies the requirements for ball bearings used in surgical implants.

  • CE Marking:

CE marking indicates that a product complies with European Union health, safety, and environmental requirements. It may be required for bearings used in machinery intended to be sold within the EU market.

  • Industry-Specific Standards:

Various industries, such as aerospace, automotive, medical, and nuclear, have specific standards or certifications that bearings must meet to ensure safety, reliability, and compliance with industry-specific requirements.

  • Quality Management Systems:

Manufacturers that adhere to quality management systems, such as ISO 9001, demonstrate their commitment to consistent product quality and customer satisfaction. Certification to these systems indicates that the manufacturing process follows established protocols and best practices.

When selecting ball bearings, it’s important to consider the relevant standards and certifications that align with the application’s requirements. This ensures that the bearings meet recognized quality and performance criteria, ultimately contributing to reliable and efficient operation.

ball bearing

What are the Different Components that Make up a Typical Ball Bearing?

A typical ball bearing consists of several essential components that work together to reduce friction and support loads. Here are the main components that make up a ball bearing:

  • Outer Ring:

The outer ring is the stationary part of the bearing that provides support and houses the other components. It contains raceways (grooves) that guide the balls’ movement.

  • Inner Ring:

The inner ring is the rotating part of the bearing that attaches to the shaft. It also contains raceways that correspond to those on the outer ring, allowing the balls to roll smoothly.

  • Balls:

The spherical balls are the rolling elements that reduce friction between the inner and outer rings. Their smooth rolling motion enables efficient movement and load distribution.

  • Cage or Retainer:

The cage, also known as the retainer, maintains a consistent spacing between the balls. It prevents the balls from touching each other, reducing friction and preventing jamming.

  • Seals and Shields:

Many ball bearings include seals or shields to protect the internal components from contaminants and retain lubrication. Seals provide better protection against contaminants, while shields offer less resistance to rotation.

  • Lubricant:

Lubrication is essential to reduce friction, wear, and heat generation. Bearings are typically filled with lubricants that ensure smooth movement between the balls and raceways.

  • Flanges and Snap Rings:

In some designs, flanges or snap rings are added to help position and secure the bearing in its housing or on the shaft. Flanges prevent axial movement, while snap rings secure the bearing radially.

  • Raceways:

Raceways are the grooved tracks on the inner and outer rings where the balls roll. The shape and design of the raceways influence the bearing’s load-carrying capacity and performance.

  • Anti-Friction Shield:

In certain high-speed applications, a thin anti-friction shield can be placed between the inner and outer rings to minimize friction and heat generation.

These components work together to enable the smooth rolling motion, load support, and reduced friction that characterize ball bearings. The proper design and assembly of these components ensure the bearing’s optimal performance and longevity in various applications.

China supplier Thin Section Ball Bearing XP0 Cp0 Ar0   bearing bronzeChina supplier Thin Section Ball Bearing XP0 Cp0 Ar0   bearing bronze
editor by CX 2024-04-15

China Custom High Precision Deep Groove Ball Bearing 6000 bearing bronze

Product Description

Product Description

 We are a bearing factory, mainly producing high precision, high speed, low noise and low price motor bearings, we can also produce different grades of bearings according to different requirements, including OEM and ODM product.

The Precision Deep Groove 6000 Ball Bearing is a high-quality bearing designed for various industrial applications. With its high precision construction, this bearing ensures smooth operation and minimal friction, making it ideal for use in auto, wheel, motor, and industrial applications. Made from durable steel, this bearing offers long-lasting performance and reliability. The deep groove design of the 6000 series bearing allows for radial and axial loads to be supported efficiently. Trust in the Precision Deep Groove 6000 Ball Bearing for your precision bearing needs.

 

Product Parameters

 

bearing model Inner Diameter Outer Diameter Width Chamfer Weight
Open Sealing
d D B rs(min)  
mm mm mm mm mm Kg
604 4 12 4 4 0.15 0.00400
605 5 14 5 5 0.2 0.00450
606 6 17 6 6 0.3 0.0571
607 7 19 6 6 0.3 0.00720
608 8 22 7 7 0.3 0.01200
624 4 13 5 5 0.2 0.00300
625 5 14 5 5 0.3 0.0571
626 6 19 6 6 0.3 0.0571
627 7 22 7 7 0.3 0.01220
628 8 24 8 8 0.3 0.01600
629 9 26 8 8 0.3 0.57100
633 3 13 5 5 0.2 0.00330
634 4 16 5 5 0.3 0.00500
682 2 5 1.5 2.3 0.1 0.00012
685 5 11 3 5 0.15 0.00190
686 5 13 5 5 0.2 0.05710
688 8 16 4 5 0.2 0.00380
693 3 8 3 4 0.15 0.00080
694 4 11 4 4 0.15 0.00150
695 5 13 4 4 0.2 0.05710
696 6 15 5 5 0.2 0.00385
697 7 17 5 5 0.3 0.00500
698 8 19 6 6 0.3 0.0571
6000 10 26 8 8 0.3 0.01850
6001 12 28 8 8 0.3 0.57100
6002 15 32 9 9 0.3 0.57150
6003 17 35 10 10 0.3 0.06280
6004 20 42 12 12 0.6 0. 0571 0
6005 25 47 12 12 0.6 0.07800
6006 30 55 13 13 1 0.09000
6200 10 30 9 9 0.6 0.5710
6201 12 32 10 10 0.6 0.03650
6202 15 35 11 11 0.6 0.5710
6203 17 40 12 12 0.6 0.06500
6204 20 47 14 14 1 0.11000
6205 25 52 15 15 1 0.13400
6206 30 62 16 16 1 0.19900
6207 35 72 17 17 1.1 0.28800
6208 40 80 18 18 1.1 0.37000
6300 10 35 11 11 0.6 0.5710
6301 12 37 12 12 1 0.5710
6302 15 42 13 13 1 0.08200
6303 17 47 14 14 1 0.11000
6304 20 52 15 15 1.1 0.14200
6305 25 62 17 17 1.1 0.21400
6306 30 72 19 19 1.1 0.35000
6701 12 18 4 4 0.2 0.5710
6702 15 21 4 4 0.2 0.05710
6704 20 27 4 4 0.2 0.00450
6800 10 19 5 5 0.3 0.00500
6801 12 21 5 5 0.3 0.00600
6802 15 24 5 5 0.3 0.00700
6804 20 32 7 7 0.3 0.01800
6900 10 22 6 6 0.3 0.00900
6901 12 24 6 6 0.3 0.57180
6902 15 28 7 7 0.3 0.01600
6903 17 30 7 7 0.3 0.01800
6904 20 37 9 9 0.3 0.03600
6905 25 42 9 9 0.3 0.04200
6907 35 55 10 10 0.6 0.07400
62800 10 19 6 6 0.3 0.00630
MR137 7 13 4 4 0.2 0.00170
MR913 3.175 9 3 3 0.2 0.00090
MR923 2.3 9 3 3 0.2 0.00090
 
Note: Technically our production line can make all bearings with outer ring size less then 80mm, including non-standard bearings, we only list bearings we often produced, so doesn’t mean we can’t make other types.

Detailed Photos

Company Profile

Certifications

Packaging & Shipping

FAQ

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Meteria: Bearing Steel
Sealing: Zz 2RS Open
Precision: P2 P4 P5 P6 P0
Noise: Z1 Z2 Z3
Service: OEM ODM
Size: 10mm*26mm*8mm
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

How does Preload Affect the Performance and Efficiency of Ball Bearings?

Preload is a crucial factor in ball bearing design that significantly impacts the performance, efficiency, and overall behavior of the bearings in various applications. Preload refers to the intentional axial force applied to the bearing’s rolling elements before it is mounted. This force eliminates internal clearance and creates contact between the rolling elements and the raceways. Here’s how preload affects ball bearing performance:

  • Reduction of Internal Clearance:

Applying preload reduces the internal clearance between the rolling elements and the raceways. This eliminates play within the bearing, ensuring that the rolling elements are in constant contact with the raceways. This reduced internal clearance enhances precision and reduces vibrations during operation.

  • Increased Stiffness:

Preloaded bearings are stiffer due to the elimination of internal clearance. This increased stiffness improves the bearing’s ability to handle axial and radial loads with higher accuracy and minimal deflection.

  • Minimized Axial Play:

Preload minimizes or eliminates axial play within the bearing. This is especially important in applications where axial movement needs to be minimized, such as machine tool spindles and precision instruments.

  • Enhanced Rigidity:

The stiffness resulting from preload enhances the bearing’s rigidity, making it less susceptible to deformation under load. This is critical for maintaining precision and accuracy in applications that require minimal deflection.

  • Reduction in Ball Slippage:

Preload reduces the likelihood of ball slippage within the bearing, ensuring consistent contact between the rolling elements and the raceways. This leads to improved efficiency and better load distribution.

  • Improved Running Accuracy:

Preloading enhances the running accuracy of the bearing, ensuring that it maintains precise rotational characteristics even under varying loads and speeds. This is essential for applications requiring high accuracy and repeatability.

  • Optimized Performance at High Speeds:

Preload helps prevent skidding and slipping of the rolling elements during high-speed operation. This ensures that the bearing remains stable, reducing the risk of noise, vibration, and premature wear.

  • Impact on Friction and Heat Generation:

While preload reduces internal clearance and friction, excessive preload can lead to higher friction and increased heat generation. A balance must be struck between optimal preload and minimizing friction-related issues.

  • Application-Specific Considerations:

The appropriate amount of preload depends on the application’s requirements, such as load, speed, accuracy, and operating conditions. Over-preloading can lead to increased stress and premature bearing failure, while under-preloading may result in inadequate rigidity and reduced performance.

Overall, preload plays a critical role in optimizing the performance, accuracy, and efficiency of ball bearings. Engineers must carefully determine the right preload level for their specific applications to achieve the desired performance characteristics and avoid potential issues related to overloading or inadequate rigidity.

ball bearing

What Precautions should be taken to Prevent Contamination of Ball Bearings in Industrial Settings?

Preventing contamination of ball bearings is essential to ensure their proper function, longevity, and overall performance in industrial settings. Contaminants such as dust, dirt, debris, and particles can significantly impact bearing operation. Here are important precautions to take to prevent contamination of ball bearings:

  • Effective Sealing:

Choose ball bearings with appropriate seals or shields to prevent the ingress of contaminants. Seals provide a physical barrier against dust, moisture, and particles, ensuring the bearing’s interior remains clean.

  • Clean Environment:

Maintain a clean working environment around the machinery and equipment. Regularly clean the surrounding areas to prevent the accumulation of dirt and debris that could enter the bearings.

  • Proper Handling:

Handle bearings with clean hands and use gloves if necessary. Avoid touching the bearing surfaces with bare hands, as natural skin oils can transfer contaminants onto the bearing.

  • Clean Tools and Equipment:

Use clean tools and equipment during installation and maintenance to prevent introducing contaminants. Ensure that tools are properly cleaned before coming into contact with the bearing components.

  • Contamination-Controlled Workstations:

Establish contamination-controlled workstations for bearing handling, installation, and maintenance. These areas should have proper ventilation, filtered air, and minimal exposure to external contaminants.

  • Proper Lubrication:

Use the correct lubricant in appropriate quantities. Lubricants help create a barrier against contaminants and reduce friction. Regularly inspect and replenish lubrication to maintain its effectiveness.

  • Regular Inspections:

Implement a routine inspection schedule to monitor the condition of the bearings. Look for signs of contamination, wear, and damage. Address any issues promptly to prevent further damage.

  • Training and Education:

Train personnel on proper handling, installation, and maintenance practices to minimize the risk of contamination. Educated employees are more likely to take precautions and prevent accidental contamination.

  • Environmental Controls:

In sensitive environments, such as clean rooms or medical facilities, implement strict environmental controls to minimize the presence of contaminants that could affect bearing performance.

  • Regular Cleaning and Maintenance:

Perform regular cleaning and maintenance of machinery and equipment to prevent the buildup of contaminants. Keep bearings protected during maintenance to prevent debris from entering during the process.

  • Selection of Suitable Bearings:

Choose bearings that are specifically designed for the application’s environmental conditions. Some bearings have advanced sealing options or specialized coatings that enhance contamination resistance.

By implementing these precautions, industries can significantly reduce the risk of contamination in ball bearings, ensuring smooth operation, extended bearing life, and enhanced equipment reliability.

ball bearing

How do Ball Bearings Differ from Other Types of Bearings like Roller Bearings?

Ball bearings and roller bearings are two common types of rolling-element bearings, each with distinct designs and characteristics. Here’s a comparison of ball bearings and roller bearings:

  • Design:

Ball Bearings: Ball bearings use spherical balls to separate and reduce friction between the bearing’s inner and outer rings. The balls enable rolling motion and smooth contact, minimizing friction.

Roller Bearings: Roller bearings, as the name suggests, use cylindrical or tapered rollers instead of balls. These rollers have larger contact areas, distributing loads over a broader surface.

  • Friction and Efficiency:

Ball Bearings: Due to the point contact between the balls and the rings, ball bearings have lower friction and are more efficient at high speeds.

Roller Bearings: Roller bearings have a larger contact area, resulting in slightly higher friction compared to ball bearings. They are more suitable for heavy-load applications where efficiency is prioritized over high speeds.

  • Load Capacity:

Ball Bearings: Ball bearings excel at handling light to moderate loads in both radial and axial directions. They are commonly used in applications where smooth rotation and low friction are important.

Roller Bearings: Roller bearings have a higher load-carrying capacity than ball bearings. They can support heavier radial and axial loads and are preferred for applications with significant loads or impact forces.

  • Variability:

Ball Bearings: Ball bearings come in various designs, including deep groove, angular contact, and thrust ball bearings, each suitable for different applications.

Roller Bearings: Roller bearings have diverse types, including cylindrical, spherical, tapered, and needle roller bearings, each optimized for specific load and motion requirements.

  • Speed Capability:

Ball Bearings: The reduced friction in ball bearings makes them suitable for high-speed applications, such as electric motors and precision machinery.

Roller Bearings: Roller bearings can handle higher loads but are generally better suited for moderate to low speeds due to slightly higher friction.

  • Applications:

Ball Bearings: Ball bearings are used in applications where smooth motion, low friction, and moderate loads are essential, such as electric fans, bicycles, and some automotive components.

Roller Bearings: Roller bearings find applications in heavy machinery, construction equipment, automotive transmissions, and conveyor systems, where heavier loads and durability are crucial.

In summary, ball bearings and roller bearings differ in their design, friction characteristics, load capacities, speed capabilities, and applications. The choice between them depends on the specific requirements of the machinery and the type of loads and forces involved.

China Custom High Precision Deep Groove Ball Bearing 6000   bearing bronzeChina Custom High Precision Deep Groove Ball Bearing 6000   bearing bronze
editor by CX 2024-04-08

China high quality Deep Groove Ball Bearing CZPT CZPT CZPT CZPT 63/32 Zz 2RS DDU Good Price High Quality bearing bronze

Product Description

Product Description

China manufacturer CZPT CZPT CZPT CZPT Deep Groove Ball Bearing 63/32 Zz 2RS DDU good price

are the most widely used bearing type and are particularly versatile. They have low friction and are optimized for
low noise and low vibration which enables high rotational speeds. They accommodate radial and axial loads in both directions,
are easy to mount, and require less maintenance than other bearing types.

Product name Deep groove ball bearings
Material Bearing Steel
Standard DIN GB ISO JIS
Bearing Package Barreled, bagged, boxed, palletized or as customers’ requirement.
Service OEM service provided
Delivery time 3-10 days depends on quantity needed

 

Detailed Photos

Product Parameters

6000 series deep groove ball bearings 
Bearing No. Boundary Dimensions(mm) Basic Load Rating(N) Weight(KG)
d D B Cr Cor
604 4 12 4 960 350 0.571
605 5 14 5 1070 420 0.0037
606 6 17 6 1960 730 0.0069
607 7 19 6 2800 1060 0.0082
608 8 22 7 3290 1360 0.0129
609 9 24 7 3330 1410 0.016
6000 10 26 8 4160 1780 0.019
6001 12 28 8 5110 2380 0.571
6002 15 32 9 5590 2840 0.03
6003 17 35 10 6000 3250 0.039
6004 20 42 12 9390 5571 0.069
6005 25 47 12 10060 5860 0.08
6006 30 55 13 11900 7460 0.12
6007 35 62 14 16210 10420 0.16
6008 40 68 15 17030 11700 0.19
6009 45 75 16 21080 14780 0.25
6571 50 80 16 22000 16260 0.26
6011 55 90 18 31500 18400 0.39
6012 60 95 18 30000 23000 0.42
6013 65 100 18 32000 25000 0.44
6014 70 110 20 38000 31000 0.6
6015 75 115 20 38000 31000 0.64
6016 80 125 22 47500 40000 0.85
6017 85 130 22 47500 40000 0.89
6018 90 140 24 63800 59000 1.15
6019 95 145 24 66700 62300 1.2
6571 100 150 24 72500 70000 1.25
6200 Series Miniature Deep Groove Ball Bearing    
Bearing No. Boundary Dimensions(mm) Basic Load Rating(N) Weight(KG)
d D B Cr Cor
624 4 13 5 1150 400 0.0032
625 5 16 5 1880 680 0.0051
626 6 19 6 2800 1060 0.
627 7 22 7 3290 1360 0.0131
628 8 24 8 3330 1410 0.017
629 9 26 8 4160 1780 0.0191
6200 10 30 9 5110 2380 0.032
6201 12 32 10 6180 3060 0.037
6202 15 35 11 7450 3700 0.045
6203 17 40 12 9560 4780 0.065
6204 20 47 14 12840 6650 0.11
6205 25 52 15 14571 7930 0.13
6206 30 62 16 19460 11310 0.2
6207 35 72 17 25670 15300 0.29
6208 40 80 18 29520 181400 0.37
6209 45 85 19 32500 20400 0.41
6210 50 90 20 35000 32300 0.46
6211 55 100 21 43500 29200 0.61
6212 60 110 22 52500 36000 0.78
6213 65 120 23 57200 45710 0.99
6214 70 125 24 62000 44000 1.05
6215 75 130 25 66000 49500 1.2
6216 80 140 26 72500 53000 1.4
6217 85 150 28 83500 64000 1.8
6218 90 160 30 96000 71500 2.15
6219 95 170 32 109000 82000 2.6
6220 100 180 34 122000 93000 3.15

 

Packaging & Shipping

 

Company Profile

 

 

Our Advantages

Our Advantages:
1. World-Class Bearing: We provide our customers with all types of indigenous bearing with world-class quality.
2. OEM or Non-Stand Bearings: Any requirement for Nonstandard bearings is Easily Fulfilled by us due to its vast knowledge and links in the industry.
3. Genuine products With Excellent Quality: The company has always proved the 100% quality products it provides with genuine intent.
4. After Sales Service and Technical Assistance: The company provides after-sales service and technical assistance as per the customer’s requirements and needs.
5. Quick Delivery: The company provides just-in-time delivery with its streamlined supply chain. 

SAMPLES
1. Samples quantity: 1-10 PCS are available. 
2. Free samples: It depends on the Model No., material and quantity. Some of the bearings samples need client to
    pay samples charge and shipping cost. 
3. It’s better to start your order with Trade Assurance to get full protection for your samples order. 

CUSTOMIZED
The customized LOGO or drawing is acceptable for us. 

MOQ
1. MOQ: 10 PCS standard bearings. 
2. MOQ: 1000 PCS customized your brand bearings. 

OEM POLICY
1. We can printing your brand (logo, artwork)on the shield or laser engraving your brand on the shield. 
2. We can custom your packaging according to your design
3. All copyright own by clients and we promised don’t disclose any info.
 

FAQ

1.What is the minimum order quantity for this product?
    Can be negotiated, we will try our best to meet customer needs.Our company is mainly based on wholesale sales,
    most customers’orders are more than 1 ton.
2.What is your latest delivery time?
    Most orders will be shipped within 7-15 days of payment being received.
3.Does your company have quality assurance?
    Yes, for 1 years.
4.What is the competitiveness of your company’s products compared to other companies?
    High precision, high speed, low noise.
5.What are the advantages of your company’s services compared to other companies?
    Answer questions online 24 hours a day, reply in a timely manner, and provide various documents required by
    customers for customs clearance or sales. 100% after-sales service.
6.Which payment method does your company support?
    Do our best to meet customer needs, negotiable.
7.How to contact us quickly?
    Please send us an inquiry or message and leave your other contact information, such as phone number,
     account or account, we will contact you as soon as possible and provide the detailed information you need.
       Please feel free to contact us, if you have any other question

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Product Name: Deep Groove Ball Bearing
Bore Size: 1-160 mm
Seals Type: Zz 2RS Open
Lubrication: Grease or Oil
Precision Rating: P0 P6 P5 P4
Vibration: Z1V1 Z2V2 Z3V3
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

What are the Materials Typically Used in Manufacturing Ball Bearings and Their Advantages?

Ball bearings are manufactured using a variety of materials, each chosen for its specific properties and advantages in various applications. Here are some commonly used materials in ball bearing manufacturing and their respective benefits:

  • High-Carbon Chrome Steel (AISI 52100):

This is the most common material used for ball bearing manufacturing. It offers excellent hardness, wear resistance, and fatigue strength. High-carbon chrome steel bearings are suitable for a wide range of applications, from industrial machinery to automotive components.

  • Stainless Steel (AISI 440C, AISI 304, AISI 316):

Stainless steel bearings are corrosion-resistant and suitable for applications where moisture, chemicals, or exposure to harsh environments are concerns. AISI 440C offers high hardness and corrosion resistance, while AISI 304 and AISI 316 provide good corrosion resistance and are often used in food and medical industries.

  • Ceramic:

Ceramic bearings use silicon nitride (Si3N4) or zirconia (ZrO2) balls. Ceramic materials offer high stiffness, low density, and excellent resistance to corrosion and heat. Ceramic bearings are commonly used in high-speed and high-temperature applications, such as in aerospace and racing industries.

  • Plastic (Polyamide, PEEK):

Plastic bearings are lightweight and offer good corrosion resistance. Polyamide bearings are commonly used due to their low friction and wear properties. Polyether ether ketone (PEEK) bearings provide high-temperature resistance and are suitable for demanding environments.

  • Bronze:

Bronze bearings are often used in applications where self-lubrication is required. Bronze has good thermal conductivity and wear resistance. Bearings made from bronze are commonly used in machinery requiring frequent starts and stops.

  • Hybrid Bearings:

Hybrid bearings combine steel rings with ceramic balls. These bearings offer a balance between the advantages of both materials, such as improved stiffness and reduced weight. Hybrid bearings are used in applications where high speeds and low friction are essential.

  • Specialty Alloys:

For specific applications, specialty alloys may be used to meet unique requirements. For example, bearings used in extreme temperatures or corrosive environments may be made from materials like titanium or hastelloy.

  • Coated Bearings:

Bearings may also be coated with thin layers of materials like diamond-like carbon (DLC) or other coatings to enhance performance, reduce friction, and improve wear resistance.

The choice of material depends on factors such as application requirements, operating conditions, load, speed, and environmental factors. Selecting the right material is essential for ensuring optimal bearing performance, longevity, and reliability in diverse industries and applications.

ball bearing

How do Ceramic Ball Bearings Compare to Traditional Steel Ball Bearings in Terms of Performance?

Ceramic ball bearings and traditional steel ball bearings have distinct characteristics that can impact their performance in various applications. Here’s a comparison of how these two types of bearings differ in terms of performance:

  • Material Composition:

Ceramic Ball Bearings:

Ceramic ball bearings use ceramic rolling elements, typically made from materials like silicon nitride (Si3N4) or zirconium dioxide (ZrO2). These ceramics are known for their high hardness, low density, and resistance to corrosion and wear.

Traditional Steel Ball Bearings:

Traditional steel ball bearings use steel rolling elements. The type of steel used can vary, but common materials include chrome steel (52100) and stainless steel (440C). Steel bearings are known for their durability and strength.

  • Friction and Heat:

Ceramic Ball Bearings:

Ceramic bearings have lower friction coefficients compared to steel bearings. This results in reduced heat generation during operation, contributing to higher efficiency and potential energy savings.

Traditional Steel Ball Bearings:

Steel bearings can generate more heat due to higher friction coefficients. This can lead to increased energy consumption in applications where efficiency is crucial.

  • Weight:

Ceramic Ball Bearings:

Ceramic bearings are lighter than steel bearings due to the lower density of ceramics. This weight reduction can be advantageous in applications where minimizing weight is important.

Traditional Steel Ball Bearings:

Steel bearings are heavier than ceramic bearings due to the higher density of steel. This weight may not be as critical in all applications but could impact overall equipment weight and portability.

  • Corrosion Resistance:

Ceramic Ball Bearings:

Ceramic bearings have excellent corrosion resistance, making them suitable for applications in corrosive environments, such as marine or chemical industries.

Traditional Steel Ball Bearings:

Steel bearings are susceptible to corrosion, especially in harsh environments. Stainless steel variants offer improved corrosion resistance but may still corrode over time.

  • Speed and Precision:

Ceramic Ball Bearings:

Ceramic bearings can operate at higher speeds due to their lower friction and ability to withstand higher temperatures. They are also known for their high precision and low levels of thermal expansion.

Traditional Steel Ball Bearings:

Steel bearings can operate at high speeds as well, but their heat generation may limit performance in certain applications. Precision steel bearings are also available but may have slightly different characteristics compared to ceramics.

  • Cost:

Ceramic Ball Bearings:

Ceramic bearings are generally more expensive to manufacture than steel bearings due to the cost of ceramic materials and the challenges in producing precision ceramic components.

Traditional Steel Ball Bearings:

Steel bearings are often more cost-effective to manufacture, making them a more economical choice for many applications.

In conclusion, ceramic ball bearings and traditional steel ball bearings offer different performance characteristics. Ceramic bearings excel in terms of low friction, heat generation, corrosion resistance, and weight reduction. Steel bearings are durable, cost-effective, and widely used in various applications. The choice between the two depends on the specific requirements of the application, such as speed, precision, corrosion resistance, and budget considerations.

ball bearing

What Factors should be Considered when Selecting a Ball Bearing for a Particular Application?

Selecting the right ball bearing for a specific application involves careful consideration of various factors to ensure optimal performance, longevity, and reliability. Here are the key factors that should be taken into account:

  • Load Type and Magnitude:

Determine the type of load (radial, axial, or combined) and the magnitude of the load that the bearing will need to support. Choose a bearing with the appropriate load-carrying capacity to ensure reliable operation.

  • Speed and Operating Conditions:

Consider the rotational speed of the application and the operating conditions, such as temperature, humidity, and exposure to contaminants. Different bearing types and materials are suited for varying speeds and environments.

  • Accuracy and Precision:

For applications requiring high accuracy and precision, such as machine tool spindles or optical instruments, choose high-precision bearings that can maintain tight tolerances and minimize runout.

  • Space Limitations:

If the application has limited space, choose miniature or compact ball bearings that can fit within the available dimensions without compromising performance.

  • Thrust and Radial Loads:

Determine whether the application requires predominantly thrust or radial load support. Choose the appropriate type of ball bearing (thrust, radial, or angular contact) based on the primary load direction.

  • Alignment and Misalignment:

If the application experiences misalignment between the shaft and housing, consider self-aligning ball bearings that can accommodate angular misalignment.

  • Mounting and Installation:

Consider the ease of mounting and dismounting the bearing. Some applications may benefit from features like flanges or snap rings for secure installation.

  • Lubrication and Maintenance:

Choose a bearing with appropriate lubrication options based on the application’s speed and temperature range. Consider whether seals or shields are necessary to protect the bearing from contaminants.

  • Environmental Conditions:

Factor in the operating environment, including exposure to corrosive substances, chemicals, water, or dust. Choose materials and coatings that can withstand the specific environmental challenges.

  • Bearing Material:

Select a bearing material that suits the application’s requirements. Common materials include stainless steel for corrosion resistance and high-carbon chrome steel for general applications.

  • Bearing Arrangement:

Consider whether a single-row, double-row, or multiple bearings in a specific arrangement are needed to accommodate the loads and moments present in the application.

By carefully evaluating these factors, engineers and designers can choose the most suitable ball bearing that aligns with the specific demands of the application, ensuring optimal performance, durability, and overall operational efficiency.

China high quality Deep Groove Ball Bearing CZPT CZPT CZPT CZPT 63/32 Zz 2RS DDU Good Price High Quality   bearing bronzeChina high quality Deep Groove Ball Bearing CZPT CZPT CZPT CZPT 63/32 Zz 2RS DDU Good Price High Quality   bearing bronze
editor by CX 2024-03-30

China Standard V1/V2 /V3/V4 Radial Bearing Non-Standard Parts Ball Bearings 6000 6001 6200 6300 bearing bronze

Product Description

 

1. Professional Bearing Manufacturer with 10 years export experience.
2.Large Stock.
3.Prompt Lead time.
4.SMALL order accepted.
5.A Wide Range of Qualified Bearing with Competitive price.
6.FREE Samples.
7.Brand Packagings accepted.
8.OEM service(Manufacturing according to your drawings and special request).

Product Parameters

 

Name

Deep Groove Ball Bearing

Model Number

  Open ZZ 2RS, RS, Z,DDU

Brand

CZPT Or Customized Logo

Material

Chrome Steel (GCR15/SAE512-3480

6014

6214

6314

6414

6803

62214

62314

9491-3820

6017

6217

6317

6417

6806

160703

3201

9491

3202

B17-116

6019

6219

6319

6419

6808

1160304

3203

DG3062

6571

6220

6320

6420

6809

1160305

3204

DG358571

6571

6221

6321

606-2RS

6810

1180304

3205

DG357226

6571

6222

6322

607-2RS

3211

1180305

3206

DG357222

6571

6224

6324

608-2RS

3212

20703

3207

DG4 0571 1/27

6026

6226

6326

609-2RS

3213

20803

3208

B8-85

6571

6228

6328

626-2RS

3214

98305

3209

B17-99

6030

6230

6330

627-2RS

3215

B22-19

3210

B15-86

 

Detailed Photos

Packing Details

General Packing Methods:
A: Tube Package + Outer Carton + Pallet
B: Single Box + Outer Carton + Pallet
C: Tube Package + Middle Box + Outer Carton + Pallet
D: Single package+ Middle Box+ Outer Carton+ Pallet
E: According to your request

Why Choose US

Exhibition Show

Company Profile

The factory mainly produce Tapered roller bearing, Deep groove ball bearing, Wheel hub bearing, Clutch release bearing,
Pillow block bearing, etc. After 10 years in the global market,SHZ Bearings get a high reputation among following Countries
and regions: Russia, Algeria, Egypt, Italy, Korea, Mexico, Brazil, South Africa, Turkey, Iran, Pakistan, Singapore, Philipphines,
USA and so on.

SHZ has accumulated more than 10 years in bearing innovation and production. SHZ persist with “Quality
first, Innovation win, Service first” as perpose. “The pursuit of perfect quality, create first-class brand” as management policy,
promoting the brand strategy,continuously improving product quality and brand connotation.

SHZ has the most advanced production equipment and strictest quality control system, strong R&D teams, experienced
engineers and technical workers. it makes our products meet domestic and international standard.

Our Service & Advantages

Our Customers

1. How many the MOQ of your company?
Our company MOQ is 1pc.

2. Could you accept OEM and customize?
YES, We can customize for you according to your sample or drawings.

3. Could you supply samples for free?

YES, We can supply samples for free, while you have o pay for the freight cost.

4. What is your terms of delivery?

We can accept EXW, FOB, CFR, CIF, etc. You can choose the 1 which is the most convenient cost
effective for you.

5. Is it your company factory or Trade company?

We are factory, our type is Factory+Trade.

6. What is the warranty for your bearing?
2years, Customer need supply photos and send bearings back.

7. Could you tell me the packing of your goods?

Single Plastic Bag+Inner Box+Carton+Pallet, or according to your request.

8. Could you supply door to door service?

YES, by air or by express (DHL, FEDEX, TNT, EMS, SF7-10 days to your city)

9. Could you tell me the payment term of your company can accept?

T/T, Western Union, Paypal, L/C, etc.

10. What about the lead time for mass production?

Honestly, it depends on the order quantity and the season you place the order, our production capacity
is 8*20ft containerseach month. Generally speaking, we suggest you start inquiry 3 to 4 months
before the date you would like to get the products at your Country.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 15°
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Radial Bearing
Material: Bearing Steel
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

Can you Provide Examples of Industries where Ball Bearings are Crucial Components?

Ball bearings are essential components in a wide range of industries where smooth motion, load support, and precision are vital. Here are some examples of industries where ball bearings play a crucial role:

  • Automotive Industry:

Ball bearings are used in various automotive applications, including wheel hubs, transmissions, engines, steering systems, and suspension components. They provide reliable rotation and support in both passenger vehicles and commercial vehicles.

  • Aerospace Industry:

In the aerospace sector, ball bearings are found in aircraft engines, landing gear systems, control surfaces, and avionics equipment. Their ability to handle high speeds and precision is vital for aviation safety.

  • Industrial Machinery:

Ball bearings are integral to a wide range of industrial machinery, including pumps, compressors, conveyors, machine tools, printing presses, and textile machinery. They facilitate smooth operation and load distribution in these diverse applications.

  • Medical Equipment:

In medical devices and equipment, ball bearings are used in surgical instruments, imaging equipment, dental tools, and laboratory machinery. Their precision and smooth movement are crucial for accurate diagnostics and treatments.

  • Robotics and Automation:

Ball bearings are key components in robotic arms, automation systems, and manufacturing machinery. They enable precise movement, high-speed operation, and reliable performance in automated processes.

  • Renewable Energy:

Wind turbines and solar tracking systems utilize ball bearings to enable efficient rotation and tracking of the wind blades and solar panels. Ball bearings withstand the dynamic loads and environmental conditions in renewable energy applications.

  • Marine and Shipbuilding:

Ball bearings are used in marine applications such as ship propulsion systems, steering mechanisms, and marine pumps. They withstand the corrosive environment and provide reliable performance in maritime operations.

  • Heavy Equipment and Construction:

In construction machinery like excavators, bulldozers, and cranes, ball bearings support the movement of heavy loads and enable efficient operation in demanding environments.

  • Electronics and Consumer Appliances:

Consumer electronics like electric motors, computer hard drives, and household appliances rely on ball bearings for smooth motion and reliable operation.

  • Oil and Gas Industry:

In oil and gas exploration and extraction equipment, ball bearings are used in drilling rigs, pumps, and processing machinery. They handle the high loads and harsh conditions of this industry.

These examples demonstrate how ball bearings are indispensable components in various industries, contributing to the efficiency, reliability, and functionality of diverse mechanical systems and equipment.

ball bearing

How do Miniature Ball Bearings Differ from Standard-sized Ones, and Where are They Commonly Used?

Miniature ball bearings, as the name suggests, are smaller in size compared to standard-sized ball bearings. They have distinct characteristics and are designed to meet the unique requirements of applications that demand compactness, precision, and efficient rotation in confined spaces. Here’s how miniature ball bearings differ from standard-sized ones and where they are commonly used:

  • Size:

The most noticeable difference is their size. Miniature ball bearings typically have outer diameters ranging from a few millimeters to around 30 millimeters, while standard-sized ball bearings have larger dimensions suitable for heavier loads and higher speeds.

  • Load Capacity:

Due to their smaller size, miniature ball bearings have lower load-carrying capacities compared to standard-sized bearings. They are designed for light to moderate loads and are often used in applications where precision and compactness are prioritized over heavy load support.

  • Precision:

Miniature ball bearings are known for their high precision and accuracy. They are manufactured to tighter tolerances, making them suitable for applications requiring precise motion control and low levels of vibration.

  • Speed:

Miniature ball bearings can achieve higher speeds than standard-sized bearings due to their smaller size and lower mass. This makes them ideal for applications involving high-speed rotation.

  • Friction and Efficiency:

Miniature ball bearings generally have lower friction due to their smaller contact area. This contributes to higher efficiency and reduced heat generation in applications that require smooth and efficient motion.

  • Applications:

Miniature ball bearings find applications in various industries and sectors:

  • Electronics and Consumer Devices:

They are used in small motors, computer disk drives, printers, and miniature fans, where space is limited but precise motion is essential.

  • Medical and Dental Equipment:

Miniature bearings are used in medical devices such as surgical instruments, dental handpieces, and diagnostic equipment due to their precision and compactness.

  • Robotics and Automation:

Miniature ball bearings are integral to robotic arms, miniature conveyors, and automation systems, enabling precise movement in confined spaces.

  • Aerospace and Defense:

They are used in applications like UAVs (drones), aerospace actuators, and satellite components where size and weight constraints are critical.

  • Optics and Instrumentation:

Miniature bearings play a role in optical instruments, cameras, and measuring devices, providing smooth rotation and accurate positioning.

Overall, miniature ball bearings are specialized components designed for applications where space, precision, and efficient rotation are paramount. Their compactness and high precision make them crucial in various industries requiring reliable motion control in limited spaces.

ball bearing

What is a Ball Bearing and How does it Function in Various Applications?

A ball bearing is a type of rolling-element bearing that uses balls to reduce friction between moving parts and support radial and axial loads. It consists of an outer ring, an inner ring, a set of balls, and a cage that separates and maintains a consistent spacing between the balls. Here’s how ball bearings function in various applications:

  • Reduction of Friction:

Ball bearings function by replacing sliding friction with rolling friction. The smooth, spherical balls minimize the contact area between the inner and outer rings, resulting in lower friction and reduced heat generation.

  • Radial and Axial Load Support:

Ball bearings are designed to support both radial loads (forces perpendicular to the shaft’s axis) and axial loads (forces parallel to the shaft’s axis). The distribution of balls within the bearing ensures load-carrying capacity in multiple directions.

  • Smooth Rotational Movement:

Ball bearings facilitate smooth and precise rotational movement. The rolling motion of the balls allows for controlled and continuous rotation with minimal resistance.

  • Applications in Machinery:

Ball bearings are used in a wide range of machinery and equipment, including motors, generators, gearboxes, conveyors, and fans. They enable the efficient transfer of motion while reducing wear and energy losses.

  • Automotive Industry:

Ball bearings are extensively used in automobiles for various applications, including wheel hubs, transmission systems, steering mechanisms, and engine components. They provide reliability and durability in challenging automotive environments.

  • Industrial Machinery:

In industrial settings, ball bearings support rotating shafts and ensure the smooth operation of equipment such as pumps, compressors, and machine tools.

  • High-Speed Applications:

Ball bearings are suitable for high-speed applications due to their low friction and ability to accommodate rapid rotation. They are used in applications like electric motors and aerospace components.

  • Precision Instruments:

For precision instruments, such as watches, cameras, and medical devices, ball bearings provide accurate rotational movement and contribute to the overall performance of the instrument.

  • Variety of Sizes and Types:

Ball bearings come in various sizes, configurations, and materials to suit different applications. Different types include deep groove ball bearings, angular contact ball bearings, thrust ball bearings, and more.

In summary, ball bearings are essential components in a wide range of applications where smooth rotation, load support, and reduced friction are critical. Their versatility, reliability, and efficiency make them indispensable in industries spanning from automotive to industrial machinery to precision instruments.

China Standard V1/V2 /V3/V4 Radial Bearing Non-Standard Parts Ball Bearings 6000 6001 6200 6300   bearing bronzeChina Standard V1/V2 /V3/V4 Radial Bearing Non-Standard Parts Ball Bearings 6000 6001 6200 6300   bearing bronze
editor by CX 2024-03-28

China manufacturer Open Series Deep Groove Radial Ball Bearing bearing bronze

Product Description

Introduction:

Introducing Our Zero-Class Deep Groove Ball Bearings for Your Needs!

Looking to enhance the performance of your industrial machinery? Your search ends here! Our Zero-Class Deep Groove Ball Bearings are engineered to offer a myriad of advantages, making them the perfect choice for your requirements.

1. Exceptional Precision: Our bearings are crafted with meticulous precision, ensuring minimal friction and optimal performance, thus enhancing the efficiency of your machinery.

2. High Load Capacity: Designed to withstand heavy axial and radial loads, our bearings guarantee reliable operation even in the most demanding applications.

3. Low Maintenance: Say goodbye to frequent downtime and maintenance costs. Our Zero-Class Deep Groove Ball Bearings are built to last, reducing the need for replacements.

4. Versatile Applications: Whether you operate in automotive, manufacturing, or any other industry, these bearings are versatile enough to meet a wide range of app

Parameter:

Product Name Ball bearing Xihu (West Lake) Dis.r bearing Piliow bilock bearing Needle roller bearing Thrust ball bearing
Brand Name  KSA
Material Gcr15
Precision Grade P0,P6,P5
Certification ISO 9001
Packeage Box /Carton/Wooden Box/Plastic Tube or Per buyers requirement
MOQ Depending On Moedl
Serice OEM

Sample Available
Payment TT or L/C or Western Union
Port HangZhou

Model Internal diameter External diameter Height Weight
MR52 2 5 2.5 0.00571
MR62 2 6 2.5 0.00032
MR63 3 6 2.5 0.00035
MR83 3 8 3 0.00038
MR93 3 9 4 0.00052
MR74 4 7 2 0.00048
MR84 4 8 3 0.00055
MR104 4 10 4 0.00068
MR85 5 8 2 0.00063
MR95 5 9 3 0.00065
MR105 5 10 4 0.0012
MR115 5 11 4 0.0019
MR106 6 10 2.5 0.0018
MR126 6 12 3 0.0019
MR117 7 11 2.5 0.0018
MR137 7 13 4 0.0571
MR128 8 12 2.5 0.0026
MR148 8 14 3.5 0.0032
R144 3.175 6.35 2.38 0.0571
R2 3.175 9.525 3.967 0.00065
R155 3.967 7.938 3.175 0.00065
R156 4.762 7.938 3.175 0.00065
R1166 4.762 9.525 3.175 0.0012
R3 6.35 12.7 4.978 0.0018
R168 6.35 9.525 3.175 0.0016
R188 6.35 12.7 4.762 0.0018
R4 6.35 15.875 4.978 0.0032
R1810 7.938 12.7 3.967 0.0571
R6 9.525 22.225 7.142 0.016
R8 12.7 28.575 7.938 0.018
MR104 15.875 34.925 8.733 0.571
R12 19.05 41.275 7.938 0.052
6700 10 15 3 0.001
6701 12 18 4 0.002
6702 15 21 4 0.002
6703 17 47 10 0.003
6704 20 27 4 0.006
6705 25 32 4 0.018
6706 30 37 4 0.571
6707 35 44 5 0.026
6708 40 50 6 0.571
6709 45 55 6 0.033
6710 50 62 6 0.04
6711 55 68 7 0.052
6712 60 75 10 0.084

FAQ

SAMPLES
1.Samples quantity: 1-10 pcs are available.
2.Free samples: It depends on the model NO., material and quantity. Some of the bearings samples need client to pay samples charge and shipping cost.
3.It’s better to start your order with Trade Assurance to get full protection for your samples order.

CUSTOMIZED
The customized LOGO or drawing is acceptable for us.

MOQ
1.MOQ: 10 pcs mix different standard bearings.
2.MOQ: 10 pcs customized your brand bearings.

OEM POLICY
1.We can printing your brand (logo,artwork)on the bearings or laser engraving your brand on the bearings.
2.We can custom your packaging according to your design
3.All copyright own by clients and we promised don’t disclose any info.

SUPPORT
Please visit our  bearings website, we strongly encourage that you can communicate with us through email, thanks! 

Quality: High Quality
Inventory: Abundant
Major Market: Global
Trait: Bainite Process, High Quality Bearing Steel
Seal Type: Open Type
Minimum Order Quantity: One
Samples:
US$ 6.95/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

Can you Provide Examples of Industries where Ball Bearings are Crucial Components?

Ball bearings are essential components in a wide range of industries where smooth motion, load support, and precision are vital. Here are some examples of industries where ball bearings play a crucial role:

  • Automotive Industry:

Ball bearings are used in various automotive applications, including wheel hubs, transmissions, engines, steering systems, and suspension components. They provide reliable rotation and support in both passenger vehicles and commercial vehicles.

  • Aerospace Industry:

In the aerospace sector, ball bearings are found in aircraft engines, landing gear systems, control surfaces, and avionics equipment. Their ability to handle high speeds and precision is vital for aviation safety.

  • Industrial Machinery:

Ball bearings are integral to a wide range of industrial machinery, including pumps, compressors, conveyors, machine tools, printing presses, and textile machinery. They facilitate smooth operation and load distribution in these diverse applications.

  • Medical Equipment:

In medical devices and equipment, ball bearings are used in surgical instruments, imaging equipment, dental tools, and laboratory machinery. Their precision and smooth movement are crucial for accurate diagnostics and treatments.

  • Robotics and Automation:

Ball bearings are key components in robotic arms, automation systems, and manufacturing machinery. They enable precise movement, high-speed operation, and reliable performance in automated processes.

  • Renewable Energy:

Wind turbines and solar tracking systems utilize ball bearings to enable efficient rotation and tracking of the wind blades and solar panels. Ball bearings withstand the dynamic loads and environmental conditions in renewable energy applications.

  • Marine and Shipbuilding:

Ball bearings are used in marine applications such as ship propulsion systems, steering mechanisms, and marine pumps. They withstand the corrosive environment and provide reliable performance in maritime operations.

  • Heavy Equipment and Construction:

In construction machinery like excavators, bulldozers, and cranes, ball bearings support the movement of heavy loads and enable efficient operation in demanding environments.

  • Electronics and Consumer Appliances:

Consumer electronics like electric motors, computer hard drives, and household appliances rely on ball bearings for smooth motion and reliable operation.

  • Oil and Gas Industry:

In oil and gas exploration and extraction equipment, ball bearings are used in drilling rigs, pumps, and processing machinery. They handle the high loads and harsh conditions of this industry.

These examples demonstrate how ball bearings are indispensable components in various industries, contributing to the efficiency, reliability, and functionality of diverse mechanical systems and equipment.

ball bearing

Are there any Industry Standards or Certifications that Ball Bearings should Meet?

Yes, there are several industry standards and certifications that ball bearings should meet to ensure their quality, performance, and reliability. These standards help manufacturers, engineers, and customers assess the suitability of bearings for specific applications. Some of the key standards and certifications for ball bearings include:

  • ISO Standards:

The International Organization for Standardization (ISO) has developed a series of standards related to ball bearings. ISO 15 defines dimensions, boundary dimensions, and tolerances for radial bearings. ISO 281 specifies dynamic load ratings and calculation methods for bearings’ life calculations.

  • ABEC (Annular Bearing Engineering Committee) Ratings:

ABEC ratings are commonly used in North America to indicate the precision and performance of ball bearings. Ratings range from ABEC 1 (lowest precision) to ABEC 9 (highest precision). However, it’s important to note that ABEC ratings focus primarily on dimensional tolerances and do not encompass all aspects of bearing quality.

  • DIN Standards:

The German Institute for Standardization (Deutsches Institut für Normung, DIN) has published various standards related to ball bearings. DIN 625 covers dimensions for deep groove ball bearings, while DIN 616 provides guidelines for precision angular contact ball bearings.

  • JIS (Japanese Industrial Standards):

JIS standards are used in Japan and internationally to define the characteristics and dimensions of various products, including ball bearings. JIS B 1512 outlines the classification and dimensions of rolling bearings.

  • ASTM (American Society for Testing and Materials) Standards:

ASTM has standards that cover various aspects of bearing testing, performance, and materials. ASTM F2215, for instance, specifies the requirements for ball bearings used in surgical implants.

  • CE Marking:

CE marking indicates that a product complies with European Union health, safety, and environmental requirements. It may be required for bearings used in machinery intended to be sold within the EU market.

  • Industry-Specific Standards:

Various industries, such as aerospace, automotive, medical, and nuclear, have specific standards or certifications that bearings must meet to ensure safety, reliability, and compliance with industry-specific requirements.

  • Quality Management Systems:

Manufacturers that adhere to quality management systems, such as ISO 9001, demonstrate their commitment to consistent product quality and customer satisfaction. Certification to these systems indicates that the manufacturing process follows established protocols and best practices.

When selecting ball bearings, it’s important to consider the relevant standards and certifications that align with the application’s requirements. This ensures that the bearings meet recognized quality and performance criteria, ultimately contributing to reliable and efficient operation.

ball bearing

What Factors should be Considered when Selecting a Ball Bearing for a Particular Application?

Selecting the right ball bearing for a specific application involves careful consideration of various factors to ensure optimal performance, longevity, and reliability. Here are the key factors that should be taken into account:

  • Load Type and Magnitude:

Determine the type of load (radial, axial, or combined) and the magnitude of the load that the bearing will need to support. Choose a bearing with the appropriate load-carrying capacity to ensure reliable operation.

  • Speed and Operating Conditions:

Consider the rotational speed of the application and the operating conditions, such as temperature, humidity, and exposure to contaminants. Different bearing types and materials are suited for varying speeds and environments.

  • Accuracy and Precision:

For applications requiring high accuracy and precision, such as machine tool spindles or optical instruments, choose high-precision bearings that can maintain tight tolerances and minimize runout.

  • Space Limitations:

If the application has limited space, choose miniature or compact ball bearings that can fit within the available dimensions without compromising performance.

  • Thrust and Radial Loads:

Determine whether the application requires predominantly thrust or radial load support. Choose the appropriate type of ball bearing (thrust, radial, or angular contact) based on the primary load direction.

  • Alignment and Misalignment:

If the application experiences misalignment between the shaft and housing, consider self-aligning ball bearings that can accommodate angular misalignment.

  • Mounting and Installation:

Consider the ease of mounting and dismounting the bearing. Some applications may benefit from features like flanges or snap rings for secure installation.

  • Lubrication and Maintenance:

Choose a bearing with appropriate lubrication options based on the application’s speed and temperature range. Consider whether seals or shields are necessary to protect the bearing from contaminants.

  • Environmental Conditions:

Factor in the operating environment, including exposure to corrosive substances, chemicals, water, or dust. Choose materials and coatings that can withstand the specific environmental challenges.

  • Bearing Material:

Select a bearing material that suits the application’s requirements. Common materials include stainless steel for corrosion resistance and high-carbon chrome steel for general applications.

  • Bearing Arrangement:

Consider whether a single-row, double-row, or multiple bearings in a specific arrangement are needed to accommodate the loads and moments present in the application.

By carefully evaluating these factors, engineers and designers can choose the most suitable ball bearing that aligns with the specific demands of the application, ensuring optimal performance, durability, and overall operational efficiency.

China manufacturer Open Series Deep Groove Radial Ball Bearing   bearing bronzeChina manufacturer Open Series Deep Groove Radial Ball Bearing   bearing bronze
editor by CX 2023-11-16