Tag Archives: china bearing manufacturer

China high quality High Quality Csi20037 Thin Section Ball Bearing Csi20037 Angular Contact Ball Bearing Csi20037 Bearing manufacturer

Product Description

Company Profile

STMPB INDUSTRY was established in 2571; We have 2 bearing brand which STMPB INDUSTRY and YUPO were founded in 2571.STMPB INDUSTRY is our international brand which mainly faces overseas market.YUPO is the domestic brand which manily faces China market.

STMPB INDUSTRY bearing headquarters is mainly located in HangZhou, ZheJiang Province, and the main production base is located in HangZhou, ZheJiang Province. The main products of STMPB INDUSTRY bearings are high precision bearings and customized bearings. The main products of STMPB INDUSTRY are precision angular contact ball bearings, ball screw bearings and bearing units, thin-wall equal-section bearings, precision cylindrical roller bearings, YRT bearings, precision cross roller bearings, precision slewing bearings and non-standard customized products.

STMPB INDUSTRY bearing R & D team mainly composed of professors and doctors, the R & D strength is very strong, to provide customers with the best quality production solutions and solutions. STMPB INDUSTRY bearing with precision production equipment, can provide customers with stable P4,P3,P2 grade products.

STMPB INDUSTRY bearings are mainly applied in CNC machine tools, robots, medical machinery, precision instruments, petrochemical and other fields. So far, STMPB INDUSTRY bearings customers throughout South America, Southeast Asia, the Middle East, Europe and other regions, by the world’s customers consistently high praise.

 

Product Parameters

 

  

Bearing
designations
Boundary dimensions Load rating Weight
d D d2 D2 Cr Cor
in. mm in. mm in. mm in. mm KN kg
CSI04037 4 101.6 4.75 120.65 4.277 108.64 4.473 113.61 10.3 9.3 0.20
CSI04237 4.25 107.95 5 127 4.527 114.99 4.723 119.96 10.5 9.9 0.21
CSI 0571 7 4.5 114.3 5.25 133.35 4.777 121.34 4.973 126.31 10.7 10.4 0.22
CSI5717 4.75 120.65 5.5 139.7 5.571 127.69 5.223 132.66 11.0 10.9 0.23
CSI05037 5 127 5.75 146.05 5.277 134.04 5.473 139.01 11.2 11.5 0.26
CSI5717 5.5 139.7 6.25 158.75 5.777 146.74 5.973 151.71 11.5 12.6 0.27
CSI06037 6 152.4 6.75 171.45 6.277 159.44 6.473 164.41 11.9 13.6 0.29
CSI06537 6.5 165.1 7.25 184.15 6.777 172.14 6.973 177.11 12.2 14.7 0.31
CSI07037 7 177.8 7.75 196.85 7.277 184.84 7.473 189.81 12.5 15.8 0.33
CSI5717 7.5 190.5 8.25 209.55 7.777 197.54 7.973 202.51 12.9 16.8 0.35
CSI08037 8 203.2 8.75 222.25 8.277 210.24 8.473 215.21 13.2 17.9 0.38
CSI 0571 7 9 228.6 9.75 247.65 9.277 235.64 9.473 240.61 13.7 20.0 0.43
CSI10037 10 254 10.75 273.05 10.277 261.04 10.473 266.01 14.2 22.2 0.48
CSI11037 11 279.4 11.75 298.45 11.277 286.44 11.473 291.41 14.7 24.3 0.53
CSI12037 12 304.8 12.75 323.85 12.277 311.84 12.473 316.81 15.2 26.4 0.57
CSI14037 14 355.6 14.75 374.65 14.277 362.64 14.473 367.61 16.0 30.7 0.69
CSI16037 16 406.4 16.75 425.45 16.277 413.44 16.473 418.41 16.8 35.0 0.78
CSI18037 18 457.2 18.75 476.25 18.277 464.24 18.473 469.21 17.6 39.3 0.88
CSI20037 20 508 20.75 527.05 20.277 515.04 20.473 520.01 18.2 43.6 0.98
CSI25037 25 635 25.75 654.05 25.277 642.04 25.473 647.01 19.8 54.2 1.22
CSI30037 30 762 30.75 781.05 30.277 769.04 30.473 774.01 21.1 64.9 1.46

Detailed Photos

 

Installation Instructions

(1)Inspection of components before installation

Clean the bearing housing or other mounting parts, remove the dirt, and confirm whether the burrs of each

part have been removed.
 

(2) Install it on the bearing seat or shaft

Because it is a thin-walled bearing, it is easy to tilt during installation. Please use a plastic hammer to find the

level and tap it evenly in the circumferential direction, and install it little by little.

Until you can confirm the contact surface is fully seated by sound.
 

(3) Installation method of side compression flange
 

1.  After placing the side compression flange in position,

place it in the circumferential direction.

Shake back a few times to adjust the position of the

mounting bolts.

2.  Install the compression bolt, and make sure that

there is no deviation due to the bolt hole when tightening the

bolt by hand.

The distance causes the bolts to be difficult to screw in.

3.  The tightening of the compression bolt can be

divided into 3-4 parts from temporary tightening to final

tightening stage, repeat the tightening in the order on the

diagonal. When tightening is divided into 2 parts

When tightening the inner or outer ring press bolts, the

integral outer ring is often tightened during the tightening

process.

Or the inner ring can be adjusted and rotated a little to make the outer ring divided into 2 parts or the

deviation of the inner ring is corrected.
 

Special design: If you need special structure (such as outer ring with mounting holes, inner ring without

holes, etc.), non-standard size, special materials or high precision requirements, etc., please contact.
 

 

Certifications

 

Technological Support

28 professional mechanical engineers
16 professional bearing analysis engineers
326 professional workers
83 sets of high precision CNC machine tools
32 sets of bearing testing equipment
13,000 square meters factory

 

After Sales Service

In the sales process, we will have professional sales personnel to answer customers’ questions in time, update the production progress, sort out the photos and videos of packaging and delivery, provide customers with the required documents; We will also invite customers to visit our factory, and we will strive to provide solutions for customers’ needs.

It is not the end after delivery, but a new beginning. We will update the logistics status and arrival date to customers in time.Ask customers for feedback on product quality, packaging, etc. at the first time, so as to improve the next cooperation. We will do our best to deal with any customer’s problems with the product.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: C=1.0
Aligning: Non-Aligning Bearing
Separated: Separated
Rows Number: Single
Load Direction: Radial Bearing
Material: Bearing Steel
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

Can you Provide Examples of Industries where Ball Bearings are Crucial Components?

Ball bearings are essential components in a wide range of industries where smooth motion, load support, and precision are vital. Here are some examples of industries where ball bearings play a crucial role:

  • Automotive Industry:

Ball bearings are used in various automotive applications, including wheel hubs, transmissions, engines, steering systems, and suspension components. They provide reliable rotation and support in both passenger vehicles and commercial vehicles.

  • Aerospace Industry:

In the aerospace sector, ball bearings are found in aircraft engines, landing gear systems, control surfaces, and avionics equipment. Their ability to handle high speeds and precision is vital for aviation safety.

  • Industrial Machinery:

Ball bearings are integral to a wide range of industrial machinery, including pumps, compressors, conveyors, machine tools, printing presses, and textile machinery. They facilitate smooth operation and load distribution in these diverse applications.

  • Medical Equipment:

In medical devices and equipment, ball bearings are used in surgical instruments, imaging equipment, dental tools, and laboratory machinery. Their precision and smooth movement are crucial for accurate diagnostics and treatments.

  • Robotics and Automation:

Ball bearings are key components in robotic arms, automation systems, and manufacturing machinery. They enable precise movement, high-speed operation, and reliable performance in automated processes.

  • Renewable Energy:

Wind turbines and solar tracking systems utilize ball bearings to enable efficient rotation and tracking of the wind blades and solar panels. Ball bearings withstand the dynamic loads and environmental conditions in renewable energy applications.

  • Marine and Shipbuilding:

Ball bearings are used in marine applications such as ship propulsion systems, steering mechanisms, and marine pumps. They withstand the corrosive environment and provide reliable performance in maritime operations.

  • Heavy Equipment and Construction:

In construction machinery like excavators, bulldozers, and cranes, ball bearings support the movement of heavy loads and enable efficient operation in demanding environments.

  • Electronics and Consumer Appliances:

Consumer electronics like electric motors, computer hard drives, and household appliances rely on ball bearings for smooth motion and reliable operation.

  • Oil and Gas Industry:

In oil and gas exploration and extraction equipment, ball bearings are used in drilling rigs, pumps, and processing machinery. They handle the high loads and harsh conditions of this industry.

These examples demonstrate how ball bearings are indispensable components in various industries, contributing to the efficiency, reliability, and functionality of diverse mechanical systems and equipment.

ball bearing

What Precautions should be taken to Prevent Contamination of Ball Bearings in Industrial Settings?

Preventing contamination of ball bearings is essential to ensure their proper function, longevity, and overall performance in industrial settings. Contaminants such as dust, dirt, debris, and particles can significantly impact bearing operation. Here are important precautions to take to prevent contamination of ball bearings:

  • Effective Sealing:

Choose ball bearings with appropriate seals or shields to prevent the ingress of contaminants. Seals provide a physical barrier against dust, moisture, and particles, ensuring the bearing’s interior remains clean.

  • Clean Environment:

Maintain a clean working environment around the machinery and equipment. Regularly clean the surrounding areas to prevent the accumulation of dirt and debris that could enter the bearings.

  • Proper Handling:

Handle bearings with clean hands and use gloves if necessary. Avoid touching the bearing surfaces with bare hands, as natural skin oils can transfer contaminants onto the bearing.

  • Clean Tools and Equipment:

Use clean tools and equipment during installation and maintenance to prevent introducing contaminants. Ensure that tools are properly cleaned before coming into contact with the bearing components.

  • Contamination-Controlled Workstations:

Establish contamination-controlled workstations for bearing handling, installation, and maintenance. These areas should have proper ventilation, filtered air, and minimal exposure to external contaminants.

  • Proper Lubrication:

Use the correct lubricant in appropriate quantities. Lubricants help create a barrier against contaminants and reduce friction. Regularly inspect and replenish lubrication to maintain its effectiveness.

  • Regular Inspections:

Implement a routine inspection schedule to monitor the condition of the bearings. Look for signs of contamination, wear, and damage. Address any issues promptly to prevent further damage.

  • Training and Education:

Train personnel on proper handling, installation, and maintenance practices to minimize the risk of contamination. Educated employees are more likely to take precautions and prevent accidental contamination.

  • Environmental Controls:

In sensitive environments, such as clean rooms or medical facilities, implement strict environmental controls to minimize the presence of contaminants that could affect bearing performance.

  • Regular Cleaning and Maintenance:

Perform regular cleaning and maintenance of machinery and equipment to prevent the buildup of contaminants. Keep bearings protected during maintenance to prevent debris from entering during the process.

  • Selection of Suitable Bearings:

Choose bearings that are specifically designed for the application’s environmental conditions. Some bearings have advanced sealing options or specialized coatings that enhance contamination resistance.

By implementing these precautions, industries can significantly reduce the risk of contamination in ball bearings, ensuring smooth operation, extended bearing life, and enhanced equipment reliability.

ball bearing

What are the Different Components that Make up a Typical Ball Bearing?

A typical ball bearing consists of several essential components that work together to reduce friction and support loads. Here are the main components that make up a ball bearing:

  • Outer Ring:

The outer ring is the stationary part of the bearing that provides support and houses the other components. It contains raceways (grooves) that guide the balls’ movement.

  • Inner Ring:

The inner ring is the rotating part of the bearing that attaches to the shaft. It also contains raceways that correspond to those on the outer ring, allowing the balls to roll smoothly.

  • Balls:

The spherical balls are the rolling elements that reduce friction between the inner and outer rings. Their smooth rolling motion enables efficient movement and load distribution.

  • Cage or Retainer:

The cage, also known as the retainer, maintains a consistent spacing between the balls. It prevents the balls from touching each other, reducing friction and preventing jamming.

  • Seals and Shields:

Many ball bearings include seals or shields to protect the internal components from contaminants and retain lubrication. Seals provide better protection against contaminants, while shields offer less resistance to rotation.

  • Lubricant:

Lubrication is essential to reduce friction, wear, and heat generation. Bearings are typically filled with lubricants that ensure smooth movement between the balls and raceways.

  • Flanges and Snap Rings:

In some designs, flanges or snap rings are added to help position and secure the bearing in its housing or on the shaft. Flanges prevent axial movement, while snap rings secure the bearing radially.

  • Raceways:

Raceways are the grooved tracks on the inner and outer rings where the balls roll. The shape and design of the raceways influence the bearing’s load-carrying capacity and performance.

  • Anti-Friction Shield:

In certain high-speed applications, a thin anti-friction shield can be placed between the inner and outer rings to minimize friction and heat generation.

These components work together to enable the smooth rolling motion, load support, and reduced friction that characterize ball bearings. The proper design and assembly of these components ensure the bearing’s optimal performance and longevity in various applications.

China high quality High Quality Csi20037 Thin Section Ball Bearing Csi20037 Angular Contact Ball Bearing Csi20037 Bearing   manufacturerChina high quality High Quality Csi20037 Thin Section Ball Bearing Csi20037 Angular Contact Ball Bearing Csi20037 Bearing   manufacturer
editor by CX 2024-05-15

China Good quality Metric Size Sn718/850 11068/850 Angular Contact Ball Bearing 850*1030*82 mm for Metallurgical Machinery manufacturer

Product Description

Metric Size SN718/850 11068/850 Angular Contact Ball Bearing 850*1030*82 mm For Metallurgical Machinery

Bearing Specification :

Model Number SN718/850
Alternative Number  11068/850
Part Name Angular Contact Ball Bearing
Brand FSK / KBE / SKB / OEM
Material Gcr15 Chrome Steel
Cage Brass Cage
Row Single Row
Dimensions(mm)(d*D*b) 850*1030*82 mm
Weight / Mass ( KG ) 146 KG
HS Code  8482800000
Original Country Show CHINA

Bearings Detailed Pictures:

Same Series Bearings We Offer:

Bearing Number Alternative Namber d D H m
S7600 6700 10 mm 28 mm 8 mm 0.02 KG
WR1635716.2 3-637 16 mm 30 mm 106.2 mm 0.25 KG
S71003 106103 17 mm 35 mm 10 mm 0.05 KG
S75714X2 6704 20 mm 47 mm 12 mm 0.1 KG
SN7305X2/YA 26705 25 mm 62 mm 17 mm 0.28 KG
4605-2RS 186705 25 mm 67 mm 20.6 mm 0.52 KG
S76/26/YA 26905 26 mm 62 mm 17 mm 0.28 KG
SN76/32/YA 26706 32 mm 72 mm 24.5 mm 0.45 KG
LR7607 226707 35 mm 59.48 mm 14.5 mm 0.11 KG
SN72307X2/YA 26707 35 mm 80 mm 29 mm 0.56 KG
46/53/YA 996911K1 53 mm 84 mm 16.15 mm 0.44 KG
B76/63/YA 26913 63 mm 102 mm 23 mm 0.71 KG
S7216X2/YA 26216 80 mm 140 mm 21 mm 1.33 KG
3924D 3356924 120 mm 165 mm 34 mm 2.51 KG
3932D 3356932 160 mm 220 mm 45 mm 5.41 KG
3934D 3356934 170 mm 230 mm 45 mm 5.9 KG
3944D 3356944 220 mm 300 mm 60 mm 13.1 KG
S7692 6792 460 mm 540 mm 35 mm 15 KG
S71892AC 1006892 460 mm 580 mm 56 mm 36.4 KG
SN718/600 11068/600 600 mm 730 mm 60 mm 60.7 KG
76/662.3RWB1 6169/622 622.3 mm 725.49 mm 46 mm 29.58 KG
SN718/800 11068/800 800 mm 980 mm 82 mm 132 KG
SN718/850 11068/850 850 mm 1030 mm 82 mm 146 KG
SN708/1000X2 1068/1000 1000 mm 1220 mm 50 mm 140 KG
SN718/1180 11068/1180 1180 mm 1420 mm 106 mm 332 KG

Other Bearings We Offer:

Deep groove ball bearings Linear ball bearings Pillow block bearings Clutch release bearings
Cylindrical roller bearings Needle roller bearings Thrust ball bearings Thrust roller bearings
Spherical roller bearings Ball joint bearings Conveyor roller bearings Angular contact ball bearings

Our Advantage:

About FSK Factory Condition :

FAQ:
1.How can I get the bearing price?
Mike: You can leave your message on Alibaba, or conact us directly by email, , SkYPE, Viber. Tell us your quantity, usually 2-5 hours you will get the price.
2.How can I buy them?
Mike: You can place order on Alibaba, or pay the payment by Western Union, Paypal, T/T and L/C.
3. How long I can get these bearings?
Mike: for small order, we will delivery the bearings in 1-2 days after recive your payment. usually 3-5 days will arrive in your place by international express, such as DHL, TNT, UPS and so on. For big order, please contact us.
4.How to protect the bearing quality?
Mike: All procudts passed ISO9001:2008 and ISO14000 certificates. we can accept small sample order, you can check the quality.
5. Other service.
Mike: We can offer OEM service according to your demand.
 
FSK Bearing Company Advantages:
(1) We have first-class testing equipment to detect bearing various data parameters and control the quality of the bearing.
Whenever bearings must first detected whether the quality is qualified and the unqualified bearing will be eliminated directly.
So we can get the trust of a large number of customers, and supply them for several years.
(2) We have our own R & D capabilities, to help customers solve the problem of non-standard bearings.
We can also according to customer requirements change their own mark.
(3) Price, our manufacture ensure that our prices across China are quite competitive.
It is better for you to compare prices and quality among suppliers.
But everyone knows you can not buy the highest quality products with the lowest price,
but our product is the best quality if you use equal price.
 
FSK Cooperation Details
Delivery:
For Small weight or ungent ,we send by express UPS,DHL,FEDEX, or EMS,china post with Thracking number
For max production , we will ship by sea/air.
Payment Item:
TT, 30% deposit , 70% before shippment.
L/C At Sight
Paypal Or Western Union In advance
Service:
Trade Assurance
Payment Protection
Timely Delivery Guaranteed
Product Qualtity Protection

 

Metric Size SN718/850 11068/850 Angular Contact Ball Bearing 850*1030*82 mm For Metallurgical Machinery, Get Cheap Price From China Bearing Factory Now !

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 45°
Aligning: Non-Aligning Bearing
Separated: Separated
Rows Number: Single
Load Direction: Radial Bearing
Material: Bearing Steel
Samples:
US$ 0.5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

What are the Common Signs of Wear or Damage in Ball Bearings that Indicate the Need for Replacement?

Ball bearings are subjected to wear and stress during operation, and over time, they may exhibit signs of damage or deterioration that warrant replacement. Recognizing these signs is crucial to prevent catastrophic failure and ensure safe and reliable operation. Here are the common signs of wear or damage in ball bearings:

  • Unusual Noise:

If you hear unusual grinding, clicking, or rumbling noises coming from the bearing during operation, it may indicate worn-out or damaged components. Unusual noise suggests that the bearing is no longer operating smoothly.

  • Vibration:

Excessive vibration in the machinery can be a sign of bearing wear. Vibrations can result from uneven wear, misalignment, or damaged components within the bearing.

  • Increased Temperature:

Higher operating temperatures than usual may indicate increased friction due to inadequate lubrication, wear, or other issues. Monitoring the bearing’s temperature can help identify potential problems.

  • Irregular Movement:

If you notice irregular movement, jerking, or sticking during rotation, it could be a sign that the bearing is no longer operating smoothly. This may be due to damaged rolling elements or raceways.

  • Reduced Performance:

If the machinery’s performance has decreased, it may be due to a compromised bearing. Reduced efficiency, increased energy consumption, or a decline in overall performance could be indicators of bearing wear.

  • Visible Wear or Damage:

Inspect the bearing for visible signs of wear, such as pitting, scoring, or discoloration on the rolling elements or raceways. Severe wear or damage is a clear indication that the bearing needs replacement.

  • Leakage or Contamination:

If there is evidence of lubricant leakage, contamination, or the presence of foreign particles around the bearing, it suggests that the seal or shield may be compromised, leading to potential damage.

  • Looseness or Excessive Play:

If you can feel excessive play or looseness when manually moving the bearing, it could indicate worn-out components or misalignment.

  • Reduced Lifespan:

If the bearing’s expected lifespan is significantly shorter than usual, it may be due to inadequate lubrication, excessive loads, or improper installation, leading to accelerated wear.

  • Frequent Failures:

If the bearing is consistently failing despite regular maintenance and proper use, it could indicate a chronic issue that requires addressing, such as inadequate lubrication or misalignment.

It’s important to conduct regular inspections, monitor performance, and address any signs of wear or damage promptly. Replacing worn or damaged ball bearings in a timely manner can prevent further damage to machinery, reduce downtime, and ensure safe and efficient operation.

ball bearing

What are the Differences between Deep Groove Ball Bearings and Angular Contact Ball Bearings?

Deep groove ball bearings and angular contact ball bearings are two common types of ball bearings, each designed for specific applications and load conditions. Here are the key differences between these two types of bearings:

  • Design and Geometry:

Deep Groove Ball Bearings:

Deep groove ball bearings have a simple design with a single row of balls that run along deep raceways in both the inner and outer rings. The rings are usually symmetrical and non-separable, resulting in a balanced load distribution.

Angular Contact Ball Bearings:

Angular contact ball bearings have a more complex design with two rows of balls, oriented at an angle to the bearing’s axis. This arrangement allows for the transmission of both radial and axial loads, making them suitable for combined loads and applications requiring high precision.

  • Load Carrying Capacity:

Deep Groove Ball Bearings:

Deep groove ball bearings are primarily designed to carry radial loads. They can handle axial loads in both directions, but their axial load-carrying capacity is generally lower compared to angular contact ball bearings.

Angular Contact Ball Bearings:

Angular contact ball bearings are specifically designed to handle both radial and axial loads. The contact angle between the rows of balls determines the bearings’ axial load-carrying capacity. They can handle higher axial loads and are commonly used in applications with thrust loads.

  • Contact Angle:

Deep Groove Ball Bearings:

Deep groove ball bearings have no defined contact angle, as the balls move in a deep groove along the raceways. They are primarily designed for radial loads.

Angular Contact Ball Bearings:

Angular contact ball bearings have a specified contact angle between the rows of balls. This contact angle allows them to carry both radial and axial loads and is crucial for their ability to handle combined loads.

  • Applications:

Deep Groove Ball Bearings:

Deep groove ball bearings are commonly used in applications that primarily require radial loads, such as electric motors, pumps, and conveyor systems. They are also suitable for high-speed operation.

Angular Contact Ball Bearings:

Angular contact ball bearings are used in applications where both radial and axial loads are present, such as in machine tools, automotive wheel hubs, and aerospace components. They are especially useful for applications that require precise axial positioning and handling of thrust loads.

  • Limitations:

Deep Groove Ball Bearings:

Deep groove ball bearings are not as suitable for handling significant axial loads and may experience skidding under certain conditions due to their deep raceways.

Angular Contact Ball Bearings:

Angular contact ball bearings can experience increased heat generation and wear at higher speeds due to the contact angle of the balls.

In summary, the design, load-carrying capacity, contact angle, and applications differ between deep groove ball bearings and angular contact ball bearings. Choosing the appropriate type depends on the specific load conditions and requirements of the application.

ball bearing

Can you Explain the Various Types of Ball Bearings and their Specific Use Cases?

Ball bearings come in various types, each designed to meet specific application requirements. Here’s an overview of the different types of ball bearings and their specific use cases:

  • Deep Groove Ball Bearings:

Deep groove ball bearings are the most common and versatile type. They have a deep raceway that allows them to handle both radial and axial loads. They are used in a wide range of applications, including electric motors, household appliances, automotive components, and industrial machinery.

  • Angular Contact Ball Bearings:

Angular contact ball bearings have a contact angle that enables them to handle both radial and axial loads at specific angles. They are suitable for applications where combined loads or thrust loads need to be supported, such as in machine tool spindles, pumps, and agricultural equipment.

  • Self-Aligning Ball Bearings:

Self-aligning ball bearings have two rows of balls and are designed to accommodate misalignment between the shaft and the housing. They are used in applications where shaft deflection or misalignment is common, such as conveyor systems, textile machinery, and paper mills.

  • Thrust Ball Bearings:

Thrust ball bearings are designed to support axial loads in one direction. They are commonly used in applications where axial loads need to be supported, such as in automotive transmissions, steering systems, and crane hooks.

  • Single-Row vs. Double-Row Bearings:

Single-row ball bearings have a single set of balls and are suitable for moderate load and speed applications. Double-row ball bearings have two sets of balls and offer higher load-carrying capacity. Double-row designs are used in applications such as machine tool spindles and printing presses.

  • Miniature and Instrument Ball Bearings:

Miniature ball bearings are smaller in size and are used in applications with limited space and lower load requirements. They are commonly used in small electric motors, medical devices, and precision instruments.

  • Max-Type and Conrad Bearings:

Max-type ball bearings have a larger number of balls to increase load-carrying capacity. Conrad bearings have fewer balls and are used in applications with moderate loads and speeds.

  • High-Precision Ball Bearings:

High-precision ball bearings are designed for applications where accuracy and precision are critical, such as machine tool spindles, aerospace components, and optical instruments.

  • High-Speed Ball Bearings:

High-speed ball bearings are engineered to minimize friction and accommodate rapid rotation. They are used in applications such as dental handpieces, turbochargers, and centrifuges.

In summary, the various types of ball bearings are tailored to different application requirements, including load type, direction, speed, and environmental conditions. Selecting the appropriate type of ball bearing ensures optimal performance and longevity in specific applications.

China Good quality Metric Size Sn718/850 11068/850 Angular Contact Ball Bearing 850*1030*82 mm for Metallurgical Machinery   manufacturerChina Good quality Metric Size Sn718/850 11068/850 Angular Contact Ball Bearing 850*1030*82 mm for Metallurgical Machinery   manufacturer
editor by CX 2024-05-15

China manufacturer High Precision Auto Parts Deep Groove Ball Bearing Impact Resistant Tensioner Bearing drive shaft bearing

Product Description

High Precision Auto Parts Deep Groove Ball Bearing Impact Resistant Tensioner Bearing

Product Parameters

Product Name: Tensioner Bearing
Model Number: 471Q
Outer Diameter(mm) 55
Height(mm) 13
Material Chrome steel
Sealed type OPEN,RZ,2RS,4RS
Tolerance P0,P6,P5,P4,P2
Clearance C2,C0,C3,C4,C5
Noize level Z,Z1,Z2,Z3
Application Automotive Car
OEM Service Accept

Product Description

Tensioner Bearing:

-The bearings are adopted optimized structure designing so that can attain the traits of high temperature resistant, high speed resistant, long life, high speed rotation,impact resistant,high radial load,etc.

-Sealing structure and seals have the traits of high sealing ability, heat-resistant, abrasiveness and also can prevent the leakage of the grease, as they are helpful for lengthening the bearings’ using life.

Detailed Photos

More Products

Quality Control

Company Profile

ZHangZhouG SHENG YA BEARING TECHNOLOGY CO,LTD.was founded in 1996, covering an area of more than 10,000 square meters, with as sets of more than 50 million yuan, and more than 80 employees, including more than 10 professional and technical personnel with intermediate and senior professional titles. lt specializes in the production of automotive bearings motorcycle bearings, general machine bearings, precision machine tool bearings and home appliance bearings, with an annual production capacity of 10 million sets of small and medium-sized bearings.

Our company undertakes various types of non-standard special-shaped bearings, with a wide variety and fine workmanship. lt is located in Wen.ling, HangZhou City, an important industrial, commercial and tourist city in ZHangZhoug Province, with superior geographical location and convenient transportation.

FAQ

Q1:ls your company factory or Trade Company?
A:We have our own factory, our type is factory +trade.

Q2: Could you accept OEM and customize?
A:Yes, we can customize it for you according to the sample or drawing.

Q3: What is the MOQ of your company?
A:Our MOQ is normally 10pcs, anyway lower MOQ is also acceptable with a little higher cost, as the more you purchase the cheaper cost you could get.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: One Year Warranty
Warranty: One Year Warranty
Type: Tensioner Bearing
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

ball bearing

How does Preload Affect the Performance and Efficiency of Ball Bearings?

Preload is a crucial factor in ball bearing design that significantly impacts the performance, efficiency, and overall behavior of the bearings in various applications. Preload refers to the intentional axial force applied to the bearing’s rolling elements before it is mounted. This force eliminates internal clearance and creates contact between the rolling elements and the raceways. Here’s how preload affects ball bearing performance:

  • Reduction of Internal Clearance:

Applying preload reduces the internal clearance between the rolling elements and the raceways. This eliminates play within the bearing, ensuring that the rolling elements are in constant contact with the raceways. This reduced internal clearance enhances precision and reduces vibrations during operation.

  • Increased Stiffness:

Preloaded bearings are stiffer due to the elimination of internal clearance. This increased stiffness improves the bearing’s ability to handle axial and radial loads with higher accuracy and minimal deflection.

  • Minimized Axial Play:

Preload minimizes or eliminates axial play within the bearing. This is especially important in applications where axial movement needs to be minimized, such as machine tool spindles and precision instruments.

  • Enhanced Rigidity:

The stiffness resulting from preload enhances the bearing’s rigidity, making it less susceptible to deformation under load. This is critical for maintaining precision and accuracy in applications that require minimal deflection.

  • Reduction in Ball Slippage:

Preload reduces the likelihood of ball slippage within the bearing, ensuring consistent contact between the rolling elements and the raceways. This leads to improved efficiency and better load distribution.

  • Improved Running Accuracy:

Preloading enhances the running accuracy of the bearing, ensuring that it maintains precise rotational characteristics even under varying loads and speeds. This is essential for applications requiring high accuracy and repeatability.

  • Optimized Performance at High Speeds:

Preload helps prevent skidding and slipping of the rolling elements during high-speed operation. This ensures that the bearing remains stable, reducing the risk of noise, vibration, and premature wear.

  • Impact on Friction and Heat Generation:

While preload reduces internal clearance and friction, excessive preload can lead to higher friction and increased heat generation. A balance must be struck between optimal preload and minimizing friction-related issues.

  • Application-Specific Considerations:

The appropriate amount of preload depends on the application’s requirements, such as load, speed, accuracy, and operating conditions. Over-preloading can lead to increased stress and premature bearing failure, while under-preloading may result in inadequate rigidity and reduced performance.

Overall, preload plays a critical role in optimizing the performance, accuracy, and efficiency of ball bearings. Engineers must carefully determine the right preload level for their specific applications to achieve the desired performance characteristics and avoid potential issues related to overloading or inadequate rigidity.

ball bearing

What are the Differences between Deep Groove Ball Bearings and Angular Contact Ball Bearings?

Deep groove ball bearings and angular contact ball bearings are two common types of ball bearings, each designed for specific applications and load conditions. Here are the key differences between these two types of bearings:

  • Design and Geometry:

Deep Groove Ball Bearings:

Deep groove ball bearings have a simple design with a single row of balls that run along deep raceways in both the inner and outer rings. The rings are usually symmetrical and non-separable, resulting in a balanced load distribution.

Angular Contact Ball Bearings:

Angular contact ball bearings have a more complex design with two rows of balls, oriented at an angle to the bearing’s axis. This arrangement allows for the transmission of both radial and axial loads, making them suitable for combined loads and applications requiring high precision.

  • Load Carrying Capacity:

Deep Groove Ball Bearings:

Deep groove ball bearings are primarily designed to carry radial loads. They can handle axial loads in both directions, but their axial load-carrying capacity is generally lower compared to angular contact ball bearings.

Angular Contact Ball Bearings:

Angular contact ball bearings are specifically designed to handle both radial and axial loads. The contact angle between the rows of balls determines the bearings’ axial load-carrying capacity. They can handle higher axial loads and are commonly used in applications with thrust loads.

  • Contact Angle:

Deep Groove Ball Bearings:

Deep groove ball bearings have no defined contact angle, as the balls move in a deep groove along the raceways. They are primarily designed for radial loads.

Angular Contact Ball Bearings:

Angular contact ball bearings have a specified contact angle between the rows of balls. This contact angle allows them to carry both radial and axial loads and is crucial for their ability to handle combined loads.

  • Applications:

Deep Groove Ball Bearings:

Deep groove ball bearings are commonly used in applications that primarily require radial loads, such as electric motors, pumps, and conveyor systems. They are also suitable for high-speed operation.

Angular Contact Ball Bearings:

Angular contact ball bearings are used in applications where both radial and axial loads are present, such as in machine tools, automotive wheel hubs, and aerospace components. They are especially useful for applications that require precise axial positioning and handling of thrust loads.

  • Limitations:

Deep Groove Ball Bearings:

Deep groove ball bearings are not as suitable for handling significant axial loads and may experience skidding under certain conditions due to their deep raceways.

Angular Contact Ball Bearings:

Angular contact ball bearings can experience increased heat generation and wear at higher speeds due to the contact angle of the balls.

In summary, the design, load-carrying capacity, contact angle, and applications differ between deep groove ball bearings and angular contact ball bearings. Choosing the appropriate type depends on the specific load conditions and requirements of the application.

ball bearing

What are the Primary Benefits of Using Ball Bearings in Machinery and Equipment?

Ball bearings offer several primary benefits when used in machinery and equipment. Their design and functionality provide advantages that contribute to the efficient and reliable operation of various applications. Here are the key benefits:

  • Reduced Friction:

One of the primary benefits of ball bearings is their ability to minimize friction between moving parts. The rolling motion of the balls reduces the contact area and sliding friction, leading to smoother operation and less energy loss due to frictional heating.

  • Efficient Load Support:

Ball bearings are engineered to support both radial and axial loads, making them versatile for applications with multidirectional forces. This load-bearing capability allows machinery to handle different types of loads while maintaining performance and stability.

  • Smooth Rotation:

Ball bearings enable smooth and precise rotational movement. The rolling motion of the balls provides consistent motion with minimal resistance, ensuring that machinery operates smoothly and without jerks.

  • High-Speed Capability:

Due to their low friction and efficient rolling action, ball bearings are suitable for high-speed applications. They allow machinery and equipment to achieve and maintain high rotational speeds without excessive wear or heat buildup.

  • Reduced Wear and Maintenance:

The reduced friction in ball bearings leads to lower wear on components. This results in longer service intervals and reduced maintenance requirements, saving both time and maintenance costs.

  • Energy Efficiency:

By minimizing friction and reducing energy losses, ball bearings contribute to the overall energy efficiency of machinery. This is particularly important in applications where energy consumption is a concern.

  • Versatility:

Ball bearings come in various types, sizes, and configurations, allowing them to be used in a wide range of machinery and equipment. They can be customized to suit specific application requirements.

  • Reliability and Longevity:

Ball bearings are designed to withstand heavy loads and harsh operating conditions. Their durability and resistance to wear ensure reliable performance and an extended operational life.

  • Quiet Operation:

Ball bearings contribute to quiet machinery operation due to the smooth rolling motion of the balls. This is particularly important in applications where noise reduction is a consideration.

In summary, the primary benefits of using ball bearings in machinery and equipment include reduced friction, efficient load support, smooth rotation, high-speed capability, reduced wear and maintenance, energy efficiency, versatility, reliability, and quiet operation. These benefits collectively enhance the performance and longevity of machinery across various industries.

China manufacturer High Precision Auto Parts Deep Groove Ball Bearing Impact Resistant Tensioner Bearing   drive shaft bearingChina manufacturer High Precision Auto Parts Deep Groove Ball Bearing Impact Resistant Tensioner Bearing   drive shaft bearing
editor by CX 2024-05-15

China manufacturer NSK, NTN. Koyo,Angular Contact Ball Bearings,7284c,7284CTA,7284ceta,7284acm,B7284c,7288c,7288CTA,7288ceta,7288acm,B7288c,7292c,7292CTA,7292ceta,7292acm,B7292c bearing engineering

Product Description

Angular contact ball bearings have inner and outer ring raceways that are displaced relative to each other in the direction of the bearing axis. This means that these bearings are designed to accommodate combined loads, i.e. simultaneously acting radial and axial loads.
The axial load carrying capacity of angular contact ball bearings increases as the contact angle increases. The contact angle is defined as the angle between the line joining the points of contact of the ball and the raceways in the radial plane, along which the combined load is transmitted from 1 raceway to another, and a line perpendicular to the bearing axis.

     The most commonly used designs are:

  • single row angular contact ball bearings.
  • double row angular contact ball bearings.
  • four-point contact ball bearings.

 

Part No. d/mm D/mm B/mm Load Rating(KN) Limited  Speed(r/min) Load Rating(KN) Limited  Speed(r/min)
Cr/KN Cor/KN Grease  Oil  Cr/KN Cor/KN Grease  Oil 
718 serie       α=15°(C) α=25°(AC)
71800 10 19 5 1.8 1.1 75000 120000 1.7 1.1 70000 110000
71801 12 21 5 2 1.4 70000 110000 1.9 1.3 63000 95000
71802 15 24 5 2.2 1.8 60000 90000 2.1 1.7 53000 80000
71803 17 26 5 2.3 1.9 53000 80000 2.1 1.8 50000 75000
71804 20 32 7 3.9 3.4 45000 67000 3.7 3.2 40000 60000
71805 25 37 7 4.2 4.1 38000 56000 3.9 3.9 34000 50000
71806 30 42 7 4.4 4.8 32000 48000 4.1 4.5 28000 43000
71807 35 47 7 4.6 5.5 26000 40000 4.3 5.2 24000 38000
71815 75 95 10 14.2 21.7 12000 19000 13.3 20.5 11000 18000
71816 80 100 10 14.5 23.1 11000 18000 13.6 21.8 9500 16000
71817 85 110 13 21.5 32.2 10000 17000 20.2 30.5 9000 15000
71818 90 115 13 21.7 33.5 9500 16000 20.4 31.6 8500 14000
71819 95 120 13 21.9 34.7 9000 15000 20.6 32.8 8500 14000
71820 100 125 13 22.5 37 8500 14000 21.2 34.9 8000 13000
71821 105 130 13 22.7 38.3 8500 14000 21.3 36.1 8000 13000
71822 110 140 16 31.8 51.6 8000 13000 29.9 48.7 7500 12000
71824 120 150 16 33.1 56.9 7000 11000 31.1 53.7 6700 10000
71826 130 165 18 38.7 67.6 6700 10000 36.3 63.8 6000 9000
71828 140 175 18 44.8 79.2 6000 9000 42 74.7 5600 8500
71830 150 190 20 51.2 92 5600 8500 48 86.8 5000 7500
71832 160 200 20 52.4 97.7 5000 7500 49.2 92.2 4800 7000
71834 170 215 22 66.5 123.4 4800 7000 62.4 116.5 4300 6300
71836 180 225 22 83.8 151.6 4800 7000 78.6 143 4300 6300
71838 190 240 24 100 179 4500 6700 94.4 169.2 4000 6000
71840 200 250 24 102.5 189.3 4300 6300 96.2 178.6 3800 5600
71844 220 270 24 106.4 209.3 3800 5600 99.8 197.4 3400 5000
71848 240 300 28 145 277 3400 5000 136 261 3000 4500
71852 260 320 28 148.8 299.3 3100 4600 139.6 282.3 2700 4100
71856 280 350 33 182 363.8 2800 4100 170.8 343.3 2400 3700

 

Part No. d/mm D/mm B/mm Load Rating(KN) Limited  Speed(r/min) Load Rating(KN) Limited  Speed(r/min)
Cr/KN Cor/KN Grease  Oil  Cr/KN Cor/KN Grease  Oil 
719 serie       α=15°(C) α=25°(AC)
71907 35 55 10 11 10.9 26000 40000 10.4 10.3 20000 34000
H71907 35 55 10 7.7 5.4 36000 53000 7.4 5.1 30000 45000
H71907/HQ1 35 55 10 7.7 5.4 40000 60000 7.4 5.1 34000 50000
71908 40 62 12 14 14.2 20000 34000 13.3 13.5 18000 30000
H71908 40 62 12 9.8 7 30000 45000 9.3 6.6 26000 40000
H71908/HQ1 40 62 12 9.8 7 34000 50000 9.3 6.6 28000 43000
71909 45 68 12 14.7 16.1 18000 30000 13.9 15.2 17000 28000
H71909 45 68 12 10.3 7.7 26000 40000 9.7 7.3 22000 36000
H71909/HQ1 45 68 12 10.3 7.7 28000 43000 9.7 7.3 26000 40000
71910 50 72 12 19 21.2 17000 28000 17.9 20.1 15000 24000
H71910   72 12 13.2 10.2 22000 36000 12.5 9.5 19000 32000
H71910/HQ1 50 72 12 13.2 10.2 26000 40000 12.5 9.5 22000 36000
71911 55 80 13 23.7 27.4 15000 24000 22.4 26 14000 22000
H71911 55 80 13 16.2 12.5 19000 32000 15.2 11.8 16000 26000
H71911/HQ1 55 80 13 16.2 12.5 22000 36000 15.2 11.8 22000 36000
71912 60 85 13 24.8 30.3 14000 22000 23.3 28.7 13000 20000
H71912 60 85 13 16.5 13.8 18000 30000 15.8 13.2 15000 24000
H71912/HQ1 60 85 13 16.5 13.8 19000 32000 15.8 13.2 20000 34000
71913 65 90 13 25.1 31.9 13000 20000 23.6 30.2 12000 19000
H71913 65 90 13 16.8 14.5 17000 28000 16.2 13.8 15000 24000
H71913/HQ1 65 90 13 16.8 14.5 19000 32000 16.2 13.8 17000 28000
71914 70 100 16 34.5 43.4 12000 19000 32.6 41.2 11000 18000
H71914 70 100 16 20.8 17.8 16000 26000 19.8 16.8 13000 20000
H71914/HQ1 70 100 16 20.8 17.8 19000 32000 19.8 16.8 17000 28000
71915 75 105 16 25 45.6 11000 18000 33 43.2 95000 16000
H71915 75 105 16 21.8 19.2 15000 24000 20.5 18.2 13000 20000
H71915/HQ1 75 105 16 21.8 19.2 17000 28000 20.5 18.2 15000 24000
71916 80 110 16 35.5 47.8 10000 17000 33.5 45.3 9000 15000
H71916 80 110 16 22.5 20.8 14000 22000 21.2 19.5 12000 19000
H71916/HQ1 80 110 16 22.5 20.8 16000 26000 21.2 19.5 14000 24000
71917   120 18 46.5 61.9 9500 16000 43.8 58.6 8500 14000
H71917 85 120 18 26.2 24.2 13000 20000 24.8 22.8 11000 18000
H71917/HQ1 85 120 18 26.2 24.2 15000 24000 24.8 22.8 13000 20000
71918 90 125 18 47.2 64.8 9000 15000 44.5 61.4 8000 13000
H71918 90 125 18 27.2 26.2 13000 20000 25.5 24.5 11000 18000
H71918/HQ1 90 125 18 27.2 26.2 15000 24000 25.5 24.5 13000 20000
71919 95 130 18 47.9 67.8 9000 15000 45.2 64.1 8000 13000
H71919 95 130 18 27.2 26.8 12000 19000 25.8 25.5 11000 18000
H71919/HQ1 95 130 18 27.2 26.8 14000 22000 25.8 25.5 13000 20000
71920 100 140 20 60.4 84.4 8500 14000 56.9 79.9 8000 13000
H71920 100 140 20 40.2 37.5 11000 18000 37.8 35.5 9000 15000
H71920/HQ1 100 140 20 40.2 37.5 13000 20000 37.8 35.5 11000 18000
71921 105 145 20 61.4 88.2 8000 13000 57.8 83.5 7500 12000
H71921 105 145 20 40.8 39.2 10000 17000 38.5 36.8 8500 14000
H71921/HQ1 105 145 20 40.8 39.2 12000 19000 38.5 36.8 10000 17000
71922 110 150 20 62.3 91.9 7500 12000 58.7 87 7000 11000
H71922 110 150 20 41.2 40.5 9000 15000 39.2 38.2 7500 12000
H71922/HQ1 110 150 20 41.2 40.5 11000 18000 39.2 38.2 9500 16000
71924 120 165 22 73.7 107.6 7000 11000 69.5 101.9 6700 10000
H71924 120 165 22 43.2 44.8 8500 14000 40.5 42.5 7500 12000
H71924/HQ1 120 165 22 43.2 44.8 10000 17000 40.8 42.5 9000 15000
71926 130 180 24 76.3 117.1 6700 10000 71.9 110.9 6000 9000
H71926 130 180 24 53.2 56.5 8000 13000 50.2 53.5 7500 12000
H71926/HQ1 130 180 24 53.2 56.5 9000 15000 50.2 53.5 8000 14000
71928 140 190 24 78.9 126.4 6000 9000 74.4 119.7 5600 8500
H71928 140 190 24 53.8 59.2 7000 11000 50.8 55.8 6700 10000
H71928/HQ1 140 190 24 53.8 59.2 8000 13000 50.8 55.8 7500 12000
71930 150 210 28 118.2 175.1 5600 8500 111.4 165.8 5000 7500
H71930 150 210 28 65.2 72.8 6700 10000 61.5 68.8 6000 9000
H71930/HQ1 150 210 28 65.2 72.8 7500 12000 61.5 68.8 7000 11000
71932 160 220 28 123.6 191.2 5000 7500 116.5 181.1 4800 7000
H71932 160 220 28 66.2 75.8 6000 9000 62.5 71.5 5600 8500
H71932/HQ1   220 28 66.2 75.8 7000 11000 62.5 71.5 6700 10000
71934 170 230 28 125.7 200 4800 7000 118.5 189.4 4300 6300
H71934 170 230 28 66.8 78.8 5600 8500 63.2 74.5 5000 7500
H71934/HQ1 170 230 28 66.8 78.8 6700 10000 63.2 74.2 6000 9000
71936 180 250 33 159.7 249.1 4500 6700 150.6 235.9 4000 6000
H71936 180 250 33 79.5 95.2 5000 7500 75.2 89.8 4800 7000
H71936/HQ1 180 250 33 79.5 95.2 6000 9000 75.2 89.8 5600 8500
71938 190 260 33 162.8 260.8 4300 6300 153.5 247 3800 5600
H71938 190 260 33 80.5 98.5 4800 7000 76.2 93.2 4300 6300
H71938/HQ1 190 260 33 80.5 98.5 5600 8500 76.2 93.2 5000 7500
71940 200 280 38 198.4 311.4 3800 5600 187.1 294.9 3600 5300
H71940 200 280 38 82.8 105.5 4500 6700 78.2 99.5 4000 6000
H71940/HQ1 200 280 38 82.8 105.5 5000 7500 78.2 99.5 4500 6700
71944 220 300 38 206.6 341.1 3600 5300 194.8 323 3200 4800
H71944 220 300 38 96.9 125.4 4300 6300 91.5 118.4 3800 5600
H71944/HQ1 220 300 38 96.9 125.4 5000 7500 91.5 118.4 4300 6300
71948 240 320 38 219.2 384.2 3200 4800 206.7 363.8 3000 4500
H71948 240 320 38 153 216 3900 5800 146 200 3500 5200
H71948/HQ1 240 320 38 153 216 4500 6500 146 200 4000 5800
71952 260 360 46 284.6 528.8 3000 4500 268.3 500.8 2600 4000
71956 280 380 46 288.7 554.6 2600 4000 272.2 525.5 2200 3600

 

Mod. No. d D Height Cr Cor Grease Oil Weight
(mm) (mm) (mm) (kN) (kN) (r/min) (r/min) (kg)  
7571C 50 80 16 26 21.9 13000 17000 0.29
7571AC 50 80 16 23.6 20.1 9200 11000 0.29
7210C 50 90 20 42.8 31.8 12000 16000 0.485
7210AC 50 90 20 39.4 41.3 8500 11000 0.485
7210B 50 90 20 37.535.7 26.7 6400 8500 0.485
7310B 50 110 27 64.4 44.3 5500 7300 1.14
7410B 50 130 31 90.2 60.4 4400 6000 1.92
7011C 55 90 18 34.1 28.6 11000 15000 0.42
7011AC 55 90 18 31.1 26.3 8300 10000 0.42
7211C 55 100 21 52.9 40.2 11000 14000 0.635
7211AC 55 100 21 48.7 37.1 7600 9500 0.635
7211B 55 100 21 44.1 33.8 5700 7600 0.635
7311B 55 120 29 74.3 52 5000 6700 1.45
7012C 60 95 18 35 30.6 11000 14000 0.45
7012AC 60 95 18 31.9 28.1 7700 9700 0.45
7212C 60 110 22 64 49.5 9500 13000 0.82
7212AC 60 110 22 58.9 45.7 6900 8600 0.82
7212B 60 110 22 53.4 41.6 5100 6900 0.82
7312B 60 130 31 84.9 60.3 4600 6200 1.81
7412B 60 150 35 119 86.7 3700 5100 2.85
7013C 65 100 18 37.1 34.3 10000 13000 0.47
7013AC 65 100 18 33.7 31.4 7200 9000 0.47
7213C 65 120 23 73.1 58.7 8900 12000 1.02
7213AC 65 120 23 67.3 54.2 6400 8000 1.02
7213B 65 120 23 60.9 49.3 4800 6400 1.02
7313B 65 140 33 96.1 69.3 4300 5800 2.22
7014C 70 110 20 46.9 43 9200 12000 0.66
7014AC 70 110 20 42.7 39.4 6600 8300 0.66
7214C 70 125 24 75.9 60.2 8400 11000 1.12
7214AC 70 125 24 69.8 55.6 6100 7600 1.12
7214B 70 125 24 63.2 50.6 4600 6100 1.12
7314B 70 150 35 108 78.9 4000 5400 2.7
7015C 75 115 20 48 45.6 8700 11000 0.69
7015AC 75 115 20 43.6 41.7 6300 7800 0.69
7215C 75 130 25 86.1 70.6 8000 11000 1.23
7215AC 75 130 25 79.2 65.2 5800 7200 1.23
7215B 75 130 25 71.7 59.3 4300 5800 1.23
7915B 75 160 37 125 98.5 3400 4500 3.3
7016C 80 125 22 58.7 55.3 8000 11000 0.93
7016AC 80 125 22 53.4 50.6 5800 7200 0.93
7216C 80 140 26 92.8 77.5 7500 9900 1.5
7216AC 80 140 26 85.3 71.5 5400 6700 1.5
7216B 80 140 26 77.1 65 4000 5400 1.5
7316B 80 170 39 127 100 3500 4700 3.85
7017C 85 130 22 60.1 58.7 7600 10000 0.97
7017AC 85 130 22 54.6 53.7 5500 6800 0.97
7217C 85 150 28 107 90.6 7000 9200 1.87
7217AC 85 150 28 98.6 83.6 5000 6300 1.87
7217B 85 150 28 89.2 76 3800 5000 1.87
7317B 85 180 41 137 112 3300 4400 4.53
7018C 90 140 24 71.7 69.1 7100 9400 1.26
7018AC 90 140 24 65.2 63.3 5100 6400 1.26
7218C 90 160 30 123 105 6500 8600 2.3
7218AC 90 160 30 113 96.7 4700 5900 2.3
7218B 90 160 30 102 88 3500 4700 2.3
7318B 90 190 43 148 124 3100 4200 5.3
7019C 95 145 24 73.4 73.4 6700 8900 1.32
7019AC 95 145 24 66.6 67.1 4800 6000 1.32
7219C 95 170 32 133 112 6100 8100 2.78
7219AC 95 170 32 122 103 4400 5500 2.78
7219B 95 170 32 111 94 3300 4400 2.78
7319B 95 200 45 158 137 3000 4000 6.12

 

7000 Series – Angular Contact Ball Bearing
Angular single row ball bearing have a 40° contact angle
Item No. Dimensions Basic Load Ratings (N) Speed (1/min) Mass
(mm) Dynamic Static (kg)
d D B Cr C0r Limiting Reference approx.
7004 20 42 12 13,400 7,500 18,000 0.061
7005 25 47 12 15,000 9,300 16,000 0.071
7006 30 55 13 18,300 12,500 14,000 0.109
7007 35 62 14 22,400 16,000 12,000 0.14
7008 40 68 15 26,000 18,600 10,000 0.17
 
7200 Series – Angular Contact Ball Bearing
Angular single row ball bearing have a 40° contact angle
Item No. Dimensions Basic Load Ratings (N) Speed (1/min) Mass
(mm) Dynamic Static (kg)
d D B Cr C0r Limiting Reference approx.
7200 10 30 9 5,000 2,600 32,000 26,000 0.033
7201 12 32 10 6,950 3,550 28,000 26,000 0.035
7202 15 35 11 8,000 4,450 24,000 22,000 0.044
7203 17 40 12 10,000 5,700 20,000 20,000 0.064
7204 20 47 14 13,400 7,800 18,000 18,000 0.103
7205 25 52 15 14,600 9,300 16,000 16,000 0.127
7206 30 62 16 20,400 14,100 13,000 13,000 0.197
7207 35 72 17 27,000 19,000 11,000 12,000 0.29
7208 40 80 17 32,000 23,500 9,500 10,000 0.367
7209 45 85 19 36,000 27,000 8,500 9,500 0.411
7210 50 90 20 37,500 28,500 8,000 9,000 0.456
7211 55 100 21 46,500 38,500 7,000 8,500 0.604
7212 60 110 22 56,000 45,000 6,300 7,500 0.777
7213 65 120 23 64,000 55,000 6,000 7,000 1.08
7214 70 125 24 69,500 62,000 5,600 6,700 1.17
7215 75 130 25 68,000 62,000 5,300 6,700 1.25
7216 80 140 26 80,000 72,000 5,000 6,000 1.53
7217 85 150 28 90,000 86,000 4,500 6,000 1.94
7218 90 160 30 106,000 98,000 4,300 5,600 2.38
7219 95 170 32 116,000 106,000 4,000 5,300 2.64
7220 100 180 34 137,000 132,000 3,800 5,000 3.45
7221 105 190 36 144,000 142,000 6,000 4,800 4.18
7222 110 200 38 155,000 154,000 3,600 4,500 4.7
7224 120 215 40 169,000 178,000 3,400 4,300 5.31
7226 130 230 40 186,000 204,000 3,200 3,800 6.12
7228 140 250 42 198,000 231,000 4,800 3,400 8.55
7230 150 270 45 227000 275000 4,500 3000 10.9
7232 160 290 48 236,000 280,000 4,300 2,800 13.5
7234 170 310 52 265,000 325,000 3,800 2,600 16.7
 
7300 Series – Angular Contact Ball Bearing
Angular single row ball bearing have a 40° contact angle
Item No. Dimensions Basic Load Ratings (N) Speed (1/min) Mass
(mm) Dynamic Static (kg)
d D B Cr C0r Limiting Reference approx.
7301 12 37 12 10.600 5.300 24.000 19.000 0,066
7302 15 42 13 13.200 7.200 20.000 17.000 0,081
7303 17 47 14 16.300 9.000 18.000 15.000 0,11
7304 20 52 15 19.000 11.100 17.000 13.000 0,143
7305 25 62 17 26.000 15.800 14.000 11.000 0,242
7306 30 72 19 33.000 2.210 11.000 10.000 0,341
7307 35 80 21 40.000 27.500 9.500 9.000 0,447
7308 40 90 23 50.000 34.500 8.500 8.500 0,646
7309 45 100 25 61.000 43.000 7.500 7.500 0,813
7310 50 110 27 70.000 50.000 7.000 7.000 1,13
7311 55 120 29 80.000 61.000 6.300 6.700 1,46
7312 60 130 31 90.000 69.000 5.600 6.300 1,74
7313 65 140 33 103.000 82.000 5.300 6.000 2,12
7314 70 150 35 117.000 93.000 5.000 5.600 2,58
7315 75 160 37 130.000 107.000 4.500 5.300 3,29
7316 80 170 39 144.000 124.000 4.300 4.800 3,66
7317 85 180 41 155.000 138.000 4.000 4.500 4,4
7318 90 190 43 167.000 155.000 3.800 4.300 5,14
7319 95 200 45 176.000 167.000 3.800 4.000 5,93
7320 100 215 47 199.000 197.000 3.600 3.600 7,16
7321 105 225 49 209.000 214.000 5.300 3.400 9,0
7322 110 240 50 232.000 245.000 3.400 3.200 9,97
7324 120 260 55 255.000 285.000 3.200 3.000 12,5
7326 130 280 58 285.000 325.000 3.000 2.600 15,1
7328 140 300 62 300.000 345.000 4.300 2.400 20,5
7330 150 320 65 325.000 390.000 3.800 2.200 24,8
7332 160 340 68 360.000 450.000 3.600 2.000 29,0
7334 170 360 72 405.000 530.000 3.200 1.900 34,4

 

 

 

Part No. d/mm D/mm B/mm Load Rating(KN) Limited  Speed(r/min) Load Rating(KN) Limited  Speed(r/min)
Cr/KN Cor/KN Grease  Oil  Cr/KN Cor/KN Grease  Oil 
72 serie       α=15°(C) α=25°(AC)
7200 10 30 9 6.5 3.8 56000 85000 6.3 3.7 53000 80000
7201 12 32 10 7.2 4.5 53000 80000 6.9 4.3 48000 70000
7202 15 35 11 9.1 5.8 48000 70000 8.8 5.6 43000 63000
7203 17 40 12 11.3 7.4 40000 60000 10.9 7.1 38000 56000
7204 20 47 14 13.1 9.6 34000 50000 12.6 9.2 30000 45000
7205 25 52 15 16.8 13.1 30000 45000 16.1 12.5 26000 40000
7206 30 62 16 23.4 18.8 24000 38000 22.3 18 20000 34000
7207 35 72 17 25.8 22.9 18000 30000 24.5 21.9 17000 28000
7208 40 80 18 34.1 30.9 17000 28000 32.5 29.5 15000 24000
7209 45 85 19 35.5 33.8 16000 26000 33.8 32.3 14000 22000
7210 50 90 20 43.3 40.6 15000 24000 41.3 38.7 14000 22000
7211 55 100 21 53.6 51.1 14000 22000 51.1 48.8 13000 20000
7212 60 110 22 55.8 56.2 12000 19000 53 53.5 11000 18000
7213 65 120 23 67.5 69 11000 18000 64.2 65.8 9500 16000
7214 70 125 24 70.2 74.6 10000 17000 66.6 71.1 9000 15000
7215 75 130 25 72.7 80.2 9500 16000 68.9 76.3 8500 14000
7216 80 140 26 86.5 96.5 9000 15000 82.1 91.9 8000 13000
7217 85 150 28 97.4 107.5 8500 14000 92.5 102.4 7500 12000
7218 90 160 30 121.9 131.3 8000 13000 115.8 124.6 7000 11000
7219 95 170 32 128.9 145.1 7500 12000 122.5 138.3 6700 10000
7220 100 180 34 146.2 165.9 7000 11000 138.9 158.2 6700 10000
7221 105 190 36 164.3 188.2 7000 11000 156.3 179.5 6300 9500
7222 110 200 38 170.4 202.5 6700 10000 161.8 193 6000 9000
7224 120 215 40 175.4 218.4 6000 9000 166.3 207.9 5300 8000
7226 130 230 40 200.4 258.3 5600 8500 190.4 246.2 5000 7500
7228 140 250 42 223.6 306.6 5000 7500 212.3 292.2 4500 6700
7230 150 270 45 240.9 341.5 4500 6700 228.7 325.5 4000 6000
7232 160 290 48 248.6 365.8 4300 6300 236.1 348.6 3800 5600
7234 170 310 52 300.2 459.2 3800 5600 285 437.6 3600 5300
7236 180 320 52 311.2 490.8 3800 5600 295.5 467.7 3400 5000
7238 190 340 55 321.3 524.8 3400 5000 305.1 500.1 3200 4800
7240 200 360 58 330.9 558.6 3200 4800 314.2 532.3 3000 4500

 

Angular Contact Ball Bearing
                      X1=OD-0.5mm  
Single Row Double Row Four Points Contact Ball
70 series 72 series 73 series 52 series 53 series 32 series 33 series 40 series 49 series QJ series QJF series X1 series
ITEM ITEM ITEM ITEM ITEM ITEM ITEM ITEM ITEM ITEM ITEM ITEM ITEM
7000 7200 7300 5200   3200   4032 4936 QJ203 QJF203 QJ1571X1 QJF1571X1
7001 7201 7301 5201   3201     4936X3 QJ303 QJF303    
7002 7202 7302 5202 5302 3202 3302   4938X3 QJ304 QJF304 QJ1571X1 QJF1571X1
7003 7203 7303 5203 5303 3203 3303 4040   QJ205 QJF205    
7004 7204 7304 5204 5304 3204 3304 4044 4944X3 QJ206 QJF206 QJ1571X1 QJF1571X1
7005 7205 7305 5205 5305 3205 3305 4048X1   QJ306 QJF306    
7006 7206 7306 5206 5306 3206 3306   4952X3 QJ207 QJF207 QJ1026X1 QJF1026X1
7007 7207 7307 5207 5307 3207 3307   4956X3 QJ307 QJF307    
7008 7208 7308 5208 5308 3208 3308   4960 QJ208 QJF208 QJ1571X1 QJF1571X1
7009 7209 7309 5209 5309 3209 3309   4960X3 QJ308 QJF308    
7571 7210 7310 5210 5310 3210 3310     QJ209 QJF209 QJ1030X1 QJF1030X1
7011 7211 7311 5211 5311 3211 3311     QJ309 QJF309    
7012 7212 7312 5212 5312 3212 3312     QJ210 QJF210 QJ1032X1 QJF1032X1
7013 7213 7313 5213 5313 3213 3313     QJ310 QJF310    
7014 7214 7314 5214 5314 3214 3314     QJ212 QJF212 QJ1034X1 QJF1034X1
7015 7215 7315 5215 5315 3215 3315     QJ214 QJF214    
7016 7216 7316 5216     3316     QJ216 QJF216 QJ1036X1 QJF1036X1
7018 7218 7318 5217   3220       QJ220 QJF220    
  7219 7319 5218     3322     QJ222 QJF222 QJ1038X1 QJF1038X1
7571 7220 7320 5219           QJ1571 QJF1571    
    7321 5220           QJ224 QJF224 QJ1040X1 QJF1040X1
7571 7222 7322             QJ1026 QJF1026    
7571 7224 7324             QJ226 QJF226    
7026 7226 7326             QJ1571 QJF1571    
7571 7228 7328             QJ228 QJF228    
7030 7230 7330             QJ1030 QJF1030    
7032 7232 7332             QJ230 QJF230    
7034 7234               QJ1032 QJF1032    
7036 7236 7336             QJ232 QJF232    
7038                 QJ1034 QJF1034    
7040 7240               QJ234 QJF234    
71952 7244               QJ1036 QJF1036    
71956 72948               QJ236 QJF236    
71957 7248               QJ1038 QJF1038    
7072                 QJ238 QJF238    
71976                 QJ1040 QJF1040    
                  QJ240 QJF240    
                  QJ1044 QJF1044    
                  QJ1048 QJF1048    
                  QJ1052 QJF1052    
                  QJ1056 QJF1056    
                  QJ1060 QJF1060    
                  QJ1064 QJF1064    
                  QJ1068 QJF1068    

SAMPLES
1. Samples quantity: 1-10 PCS are available.
2. Free samples: It depends on the Model No., material and quantity. Some of the bearings samples need client to pay samples charge and shipping cost.
3. It’s better to start your order with Trade Assurance to get full protection for your samples order.

CUSTOMIZED
The customized LOGO or drawing is acceptable for us.

MOQ
1. MOQ: 10 PCS standard bearings.
2. MOQ: 1000 PCS customized your brand bearings.

OEM POLICY
1. We can printing your brand (logo, artwork)on the shield or laser engraving your brand on the shield.
2. We can custom your packaging according to your design
3. All copyright own by clients and we promised don’t disclose any info.

Thank you very much for taking time to view our company’s website. If you are interested in this product, please feel free to contact us. We are always here.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 25°
Aligning: Non-Aligning Bearing
Separated: Separated
Samples:
US$ 2/Set
1 Set(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

ball bearing

Are there Specific Maintenance Practices to Ensure the Longevity of Ball Bearings?

Maintaining ball bearings is essential to ensure their longevity, reliable performance, and prevent premature failure. Proper maintenance practices can extend the lifespan of ball bearings and the equipment they are used in. Here are specific maintenance practices to consider:

  • Regular Lubrication:

Implement a regular lubrication schedule using the appropriate lubricant for the application. Lubrication reduces friction, prevents wear, and helps dissipate heat. Follow manufacturer guidelines for lubricant type, quantity, and frequency.

  • Clean Environment:

Keep the operating environment clean and free from contaminants. Dust, dirt, and debris can infiltrate bearings and cause damage. Use seals or shields to protect bearings from contaminants, especially in harsh environments.

  • Proper Installation:

Ensure correct installation of bearings using proper tools and techniques. Improper installation can lead to misalignment, uneven load distribution, and premature wear. Follow manufacturer recommendations for installation procedures.

  • Regular Inspections:

Perform routine visual inspections to check for signs of wear, damage, or contamination. Regular inspections can help identify issues early and prevent further damage. Pay attention to noise, vibration, and temperature changes.

  • Temperature Monitoring:

Monitor bearing temperatures during operation using infrared thermometers or sensors. Abnormal temperature increases can indicate inadequate lubrication, misalignment, or other problems.

  • Correct Handling:

Handle bearings with care to prevent damage during storage, transportation, and installation. Avoid dropping or subjecting them to impacts that can affect their internal components.

  • Bearing Removal and Replacement:

Follow proper procedures when removing and replacing bearings. Use appropriate tools and techniques to avoid damage to the bearing or the surrounding components.

  • Alignment Maintenance:

Maintain proper shaft and housing alignment to prevent excessive loads and wear on the bearing. Misalignment can lead to increased stress and premature failure.

  • Training and Education:

Provide training to operators and maintenance personnel on proper bearing maintenance and handling practices. Educated personnel are more likely to identify issues and perform maintenance correctly.

  • Documented Records:

Keep records of maintenance activities, inspections, lubrication schedules, and any issues encountered. This documentation helps track the bearing’s performance over time and informs future maintenance decisions.

By implementing these maintenance practices, you can ensure the longevity of ball bearings, minimize downtime, reduce operational costs, and maintain the reliability of the equipment they are a part of.

ball bearing

What Role do Seals and Shields Play in Protecting Ball Bearings from Dirt and Debris?

Seals and shields are critical components of ball bearings that play a crucial role in protecting them from dirt, debris, moisture, and contaminants in various applications. These protective features help maintain the integrity of the bearing’s internal components and ensure reliable operation. Here’s how seals and shields contribute to bearing protection:

  • Contaminant Exclusion:

Seals and shields create a physical barrier between the external environment and the bearing’s interior. They prevent dust, dirt, water, and other contaminants from entering the bearing and coming into contact with the rolling elements and raceways.

  • Lubrication Retention:

Seals and shields help retain lubrication within the bearing. They prevent the lubricant from escaping and contaminants from entering, ensuring that the bearing remains properly lubricated for smooth operation and reduced friction.

  • Corrosion Prevention:

Seals and shields protect bearing components from exposure to moisture and corrosive substances. By preventing moisture ingress, they help extend the bearing’s lifespan by minimizing the risk of corrosion-related damage.

  • Extended Bearing Life:

Seals and shields contribute to the overall longevity of the bearing by reducing wear and damage caused by contaminants. They help maintain a clean internal environment, which promotes proper rolling contact and minimizes the risk of premature failure.

  • Enhanced Performance in Harsh Environments:

In applications exposed to harsh conditions, such as outdoor machinery or industrial settings, seals and shields are vital. They protect bearings from abrasive particles, chemicals, and extreme temperatures, ensuring reliable performance despite challenging conditions.

  • Noise and Vibration Reduction:

Seals and shields can help reduce noise and vibration generated by the bearing. They provide additional damping and stability, contributing to smoother operation and enhanced user comfort in noise-sensitive applications.

  • Customized Protection:

Manufacturers offer a variety of seal and shield designs to suit different application requirements. Some seals provide higher levels of protection against contamination, while others are designed for high-speed or high-temperature environments.

  • Trade-Offs:

While seals and shields offer significant benefits, they can also introduce some friction due to contact with the bearing’s inner or outer ring. Engineers must balance the level of protection with the desired operating characteristics, considering factors like friction, speed, and environmental conditions.

Overall, seals and shields play a vital role in maintaining the integrity and performance of ball bearings. By effectively preventing contaminants from entering and preserving lubrication, they ensure the smooth and reliable operation of machinery and equipment in a wide range of applications.

ball bearing

What Factors should be Considered when Selecting a Ball Bearing for a Particular Application?

Selecting the right ball bearing for a specific application involves careful consideration of various factors to ensure optimal performance, longevity, and reliability. Here are the key factors that should be taken into account:

  • Load Type and Magnitude:

Determine the type of load (radial, axial, or combined) and the magnitude of the load that the bearing will need to support. Choose a bearing with the appropriate load-carrying capacity to ensure reliable operation.

  • Speed and Operating Conditions:

Consider the rotational speed of the application and the operating conditions, such as temperature, humidity, and exposure to contaminants. Different bearing types and materials are suited for varying speeds and environments.

  • Accuracy and Precision:

For applications requiring high accuracy and precision, such as machine tool spindles or optical instruments, choose high-precision bearings that can maintain tight tolerances and minimize runout.

  • Space Limitations:

If the application has limited space, choose miniature or compact ball bearings that can fit within the available dimensions without compromising performance.

  • Thrust and Radial Loads:

Determine whether the application requires predominantly thrust or radial load support. Choose the appropriate type of ball bearing (thrust, radial, or angular contact) based on the primary load direction.

  • Alignment and Misalignment:

If the application experiences misalignment between the shaft and housing, consider self-aligning ball bearings that can accommodate angular misalignment.

  • Mounting and Installation:

Consider the ease of mounting and dismounting the bearing. Some applications may benefit from features like flanges or snap rings for secure installation.

  • Lubrication and Maintenance:

Choose a bearing with appropriate lubrication options based on the application’s speed and temperature range. Consider whether seals or shields are necessary to protect the bearing from contaminants.

  • Environmental Conditions:

Factor in the operating environment, including exposure to corrosive substances, chemicals, water, or dust. Choose materials and coatings that can withstand the specific environmental challenges.

  • Bearing Material:

Select a bearing material that suits the application’s requirements. Common materials include stainless steel for corrosion resistance and high-carbon chrome steel for general applications.

  • Bearing Arrangement:

Consider whether a single-row, double-row, or multiple bearings in a specific arrangement are needed to accommodate the loads and moments present in the application.

By carefully evaluating these factors, engineers and designers can choose the most suitable ball bearing that aligns with the specific demands of the application, ensuring optimal performance, durability, and overall operational efficiency.

China manufacturer NSK, NTN. Koyo,Angular Contact Ball Bearings,7284c,7284CTA,7284ceta,7284acm,B7284c,7288c,7288CTA,7288ceta,7288acm,B7288c,7292c,7292CTA,7292ceta,7292acm,B7292c   bearing engineeringChina manufacturer NSK, NTN. Koyo,Angular Contact Ball Bearings,7284c,7284CTA,7284ceta,7284acm,B7284c,7288c,7288CTA,7288ceta,7288acm,B7288c,7292c,7292CTA,7292ceta,7292acm,B7292c   bearing engineering
editor by CX 2024-05-13

China manufacturer Single Row Angular Contact Ball Bearing 7000c wholesaler

Product Description

7000,7200, 7300 series of Single Row Angular Contact Ball Bearings are made of bearing steel, with Bronze, Bakelite, Nylon, Steel retainers for option. They apply to various machines, such as machine centre, gear shaft/drive shaft, chemical fiber thread spinner, etc..

Materials
Races – 52100 bearing steel
Balls – 52100 bearing steel
Retainer – Steel(options: Bakelite/bronze/nylon)

Precision Grade
P0, P6, P5, P4, P2

Angular Contact
15°, 25°, 40°

Bore Dia.
10mm ~400mm

Q1: Can I get a free sample?
A1: We provide samples free in freight collected. For special samples requirement, please contact us for more details. 
Q2: How could I pay?
A2: We prefer T/T or L/C at sight. If you prefer other payment terms, please contact us freely.
Q3: What is your brand and packing way? Can you produce my brand and packing?
A3: Our brand is SGC and our own packing materials. We can make your brand. For more details, please contact us.
Q4: What is the delivery lead time?
A4: It depends on the order quantities. The mass production lead time is about 45-60 days after receipt of the deposit. 
Q5: Are you manufacturer or  trading company?
A5: We are manufacturer and exporter. We provide all kinds of OEM services for clients around the world.
Q6: Where is your main market?
A6: We export to the North America, Mexico, Australia, South-east Asia, Europe, U.A.E., Turkey, and other countries.

Our Services
1. Professional QC and QA team to make sure all products qualified before shipping.
2. Competitive price.
3 .Standard package to ensure the safe transportation.
4. Professional service.

Why choose us?
1. Production
    Qualified production, competitive price, professional service. 
2. Quality
    All products are inspected 100% before shipment by relative testing equipments.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 15, 25, 40
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Radial Bearing
Material: Bearing Steel
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

Can you Provide Examples of Industries where Ball Bearings are Crucial Components?

Ball bearings are essential components in a wide range of industries where smooth motion, load support, and precision are vital. Here are some examples of industries where ball bearings play a crucial role:

  • Automotive Industry:

Ball bearings are used in various automotive applications, including wheel hubs, transmissions, engines, steering systems, and suspension components. They provide reliable rotation and support in both passenger vehicles and commercial vehicles.

  • Aerospace Industry:

In the aerospace sector, ball bearings are found in aircraft engines, landing gear systems, control surfaces, and avionics equipment. Their ability to handle high speeds and precision is vital for aviation safety.

  • Industrial Machinery:

Ball bearings are integral to a wide range of industrial machinery, including pumps, compressors, conveyors, machine tools, printing presses, and textile machinery. They facilitate smooth operation and load distribution in these diverse applications.

  • Medical Equipment:

In medical devices and equipment, ball bearings are used in surgical instruments, imaging equipment, dental tools, and laboratory machinery. Their precision and smooth movement are crucial for accurate diagnostics and treatments.

  • Robotics and Automation:

Ball bearings are key components in robotic arms, automation systems, and manufacturing machinery. They enable precise movement, high-speed operation, and reliable performance in automated processes.

  • Renewable Energy:

Wind turbines and solar tracking systems utilize ball bearings to enable efficient rotation and tracking of the wind blades and solar panels. Ball bearings withstand the dynamic loads and environmental conditions in renewable energy applications.

  • Marine and Shipbuilding:

Ball bearings are used in marine applications such as ship propulsion systems, steering mechanisms, and marine pumps. They withstand the corrosive environment and provide reliable performance in maritime operations.

  • Heavy Equipment and Construction:

In construction machinery like excavators, bulldozers, and cranes, ball bearings support the movement of heavy loads and enable efficient operation in demanding environments.

  • Electronics and Consumer Appliances:

Consumer electronics like electric motors, computer hard drives, and household appliances rely on ball bearings for smooth motion and reliable operation.

  • Oil and Gas Industry:

In oil and gas exploration and extraction equipment, ball bearings are used in drilling rigs, pumps, and processing machinery. They handle the high loads and harsh conditions of this industry.

These examples demonstrate how ball bearings are indispensable components in various industries, contributing to the efficiency, reliability, and functionality of diverse mechanical systems and equipment.

ball bearing

How do Miniature Ball Bearings Differ from Standard-sized Ones, and Where are They Commonly Used?

Miniature ball bearings, as the name suggests, are smaller in size compared to standard-sized ball bearings. They have distinct characteristics and are designed to meet the unique requirements of applications that demand compactness, precision, and efficient rotation in confined spaces. Here’s how miniature ball bearings differ from standard-sized ones and where they are commonly used:

  • Size:

The most noticeable difference is their size. Miniature ball bearings typically have outer diameters ranging from a few millimeters to around 30 millimeters, while standard-sized ball bearings have larger dimensions suitable for heavier loads and higher speeds.

  • Load Capacity:

Due to their smaller size, miniature ball bearings have lower load-carrying capacities compared to standard-sized bearings. They are designed for light to moderate loads and are often used in applications where precision and compactness are prioritized over heavy load support.

  • Precision:

Miniature ball bearings are known for their high precision and accuracy. They are manufactured to tighter tolerances, making them suitable for applications requiring precise motion control and low levels of vibration.

  • Speed:

Miniature ball bearings can achieve higher speeds than standard-sized bearings due to their smaller size and lower mass. This makes them ideal for applications involving high-speed rotation.

  • Friction and Efficiency:

Miniature ball bearings generally have lower friction due to their smaller contact area. This contributes to higher efficiency and reduced heat generation in applications that require smooth and efficient motion.

  • Applications:

Miniature ball bearings find applications in various industries and sectors:

  • Electronics and Consumer Devices:

They are used in small motors, computer disk drives, printers, and miniature fans, where space is limited but precise motion is essential.

  • Medical and Dental Equipment:

Miniature bearings are used in medical devices such as surgical instruments, dental handpieces, and diagnostic equipment due to their precision and compactness.

  • Robotics and Automation:

Miniature ball bearings are integral to robotic arms, miniature conveyors, and automation systems, enabling precise movement in confined spaces.

  • Aerospace and Defense:

They are used in applications like UAVs (drones), aerospace actuators, and satellite components where size and weight constraints are critical.

  • Optics and Instrumentation:

Miniature bearings play a role in optical instruments, cameras, and measuring devices, providing smooth rotation and accurate positioning.

Overall, miniature ball bearings are specialized components designed for applications where space, precision, and efficient rotation are paramount. Their compactness and high precision make them crucial in various industries requiring reliable motion control in limited spaces.

ball bearing

What are the Primary Benefits of Using Ball Bearings in Machinery and Equipment?

Ball bearings offer several primary benefits when used in machinery and equipment. Their design and functionality provide advantages that contribute to the efficient and reliable operation of various applications. Here are the key benefits:

  • Reduced Friction:

One of the primary benefits of ball bearings is their ability to minimize friction between moving parts. The rolling motion of the balls reduces the contact area and sliding friction, leading to smoother operation and less energy loss due to frictional heating.

  • Efficient Load Support:

Ball bearings are engineered to support both radial and axial loads, making them versatile for applications with multidirectional forces. This load-bearing capability allows machinery to handle different types of loads while maintaining performance and stability.

  • Smooth Rotation:

Ball bearings enable smooth and precise rotational movement. The rolling motion of the balls provides consistent motion with minimal resistance, ensuring that machinery operates smoothly and without jerks.

  • High-Speed Capability:

Due to their low friction and efficient rolling action, ball bearings are suitable for high-speed applications. They allow machinery and equipment to achieve and maintain high rotational speeds without excessive wear or heat buildup.

  • Reduced Wear and Maintenance:

The reduced friction in ball bearings leads to lower wear on components. This results in longer service intervals and reduced maintenance requirements, saving both time and maintenance costs.

  • Energy Efficiency:

By minimizing friction and reducing energy losses, ball bearings contribute to the overall energy efficiency of machinery. This is particularly important in applications where energy consumption is a concern.

  • Versatility:

Ball bearings come in various types, sizes, and configurations, allowing them to be used in a wide range of machinery and equipment. They can be customized to suit specific application requirements.

  • Reliability and Longevity:

Ball bearings are designed to withstand heavy loads and harsh operating conditions. Their durability and resistance to wear ensure reliable performance and an extended operational life.

  • Quiet Operation:

Ball bearings contribute to quiet machinery operation due to the smooth rolling motion of the balls. This is particularly important in applications where noise reduction is a consideration.

In summary, the primary benefits of using ball bearings in machinery and equipment include reduced friction, efficient load support, smooth rotation, high-speed capability, reduced wear and maintenance, energy efficiency, versatility, reliability, and quiet operation. These benefits collectively enhance the performance and longevity of machinery across various industries.

China manufacturer Single Row Angular Contact Ball Bearing 7000c   wholesalerChina manufacturer Single Row Angular Contact Ball Bearing 7000c   wholesaler
editor by CX 2024-05-09

China manufacturer Luoyang Hot Selling Ball Bearing10-20 0641/0-02032 with 50mn/42CrMo Material Swing Bearing Price with Hot selling

Product Description

HangZhou Hot Selling Ball Bearing10-20 0641/0-57132 With 50Mn/42CrMo Material Swing Bearing Price 

Four-point contact ball slewing turntable bearings 
consist of 2 ring seats. Compact structure, light weight, steel ball and arc track contact at 4 points, can bear axial force, radial force and overturning moment at the same time, has strong dynamic load.

Single row cross roller slewing bearing
Composed of 2 or 3 rings. compact structure, light weight, high manufacturing accuracy, small assembly gap and high requirement for installation accuracy. Rollers are 1:1 cross-arranged.
Can be bear axial force, overturning moment and large radial force at the same time,and widely used in lifting transportation, construction machinery and precesion products.

Double row ball slewing bearings
This kind of bearings can support high static loads with simple structures. They are mainly used in situations with variation load position and direction and continuously rotating. Main applications of this kind of bearings are deck hoisting, mining and material handling etc.

Three row roller slewing bearing
Three row roller bearing CZPT to bear all kinds of loads at the same time, it is the largest 1 of the 4 structural products with large axle and radial dimensions and firm structure. Especially suitable for heavy machinery requiring larger diameter, such as bucket wheel stacker and reclaimer, wheel crane, marine crane, port crane, ladle turret,large tonnage truck crane,heavy machinery and so on.

Flange-Light Type Slewing Bearing
The Thin Section Slewing Bearing has the same structure with the ordinary slewing bearing,but the weight is light,and rotate flexibly,which widely used in the food machinaery,cHangZhou machinery and environmental machinery etc.

Model
DL
Weight
[kg]
Dimensions Mounting dimension Structural dimension Gear data Gear circumferential force Clearance
D
[mm]
De
[mm]
H
[mm]
D1
[mm]
D2
[mm]
na Φ/M
[mm]
ni Φ/M
[mm]
t
[mm]
n1 D3
[mm]
d1
[mm]
A
[mm]
Hu
[mm]
D
[mm]
M
[mm]
Z
[mm]
B
[mm]
k.m
[mm]
Allowed
[KN]
Max
[KN]
Axial Radial
232.20.571 26.9 518 326.5 56 490 375 16 18 12 M12 20 4 412.5 415.5 453 10.5 335 5 67 45.5 -0.75 13.54 27.08 ≤0.5 ≤0.5
232.20.0544 36.7 648 445.5 56 620 505 20 18 16 M12 20 4 542.5 545.5 583 10.5 456 6 76 45.5 -0.6 16 32 ≤0.5 ≤0.5
232.20.0644 43.4 748 547.5 56 720 605 24 18 18 M12 20 4 642.5 645.5 683 10.5 558 6 93 45.5 -0.6 15.62 31.24 ≤0.5 ≤0.5
232.20. 0571 50.8 848 649.2 56 820 705 24 18 20 M12 20 4 742.5 745.5 783 10.5 660 6 110 45.5 -0.6 15.32 30.64 ≤0.5 ≤0.5
232.20.0844 61.3 948 737.6 56 920 805 28 18 20 M12 20 4 842.5 845.5 883 10.5 752 8 94 45.5 -0.8 20.8 41.6 ≤0.5 ≤0.5
232.20.0944 65.4 1048 841.6 56 1571 905 32 18 22 M12 20 4 942.5 945.5 983 10.5 856 8 107 45.5 -0.8 20.49 40.98 ≤0.5 ≤0.5
232.20.1094 80.3 1198 985.6 56 1170 1055 32 18 24 M12 20 4 1092.5 1095.5 1133 10.5 1000 8 125 45.5 -0.8 20.16 40.32 ≤0.5 ≤0.5

 

Model
DL
Weight
[kg]
Dimensions Mounting dimension Structural dimension Gear data Gear circumferential force Clearance
D
[mm]
De
[mm]
HF
[mm]
D1
[mm]
D2
[mm]
 na  Φ/M
[mm]
 ni  Φ/M
[mm]
t
[mm]
 n1  D3
[mm]
d1
[mm]
C
[mm]
HFu
[mm]
D
[mm]
m
[mm]
Z
[mm]
B
[mm]
k.m
[mm]
Allowed
[KN]
Max
[KN]
Axial Radial
231.20.571 29 504 304 56 455 332 10 M12 24 18 20 4 412.5 415.5 375 10.5 495 5 99 45.5 -0.5 11.75 23.5 ≤0.5 ≤0.5
231.20.0544 39.2 640.8 434 56 585 462 14 M12 28 18 20 4 542.5 545.5 505 10.5 630 6 105 45.5 -0.5 14.2 28.4 ≤0.5 ≤0.5
231.20.0644 47.2 742.8 534 56 685 562 16 M12 32 18 20 4 642.5 645.5 605 10.5 732 6 122 45.5 -0.6 14.2 28.4 ≤0.5 ≤0.5
231.20. 0571 53.1 838.8 634 56 785 662 18 M12 32 18 20 4 742.5 745.5 705 10.5 828 6 138 45.5 -0.6 14.2 28.4 ≤0.5 ≤0.5
231.20.0844 64.7 950.4 734 56 885 762 18 M12 36 18 20 4 842.5 845.5 805 10.5 936 8 117 45.5 -0.8 18.93 37.86 ≤0.5 ≤0.5
231.20.0944 69.1 1046.4 834 56 985 862 20 M12 40 18 20 4 942.5 945.5 905 10.5 1032 8 129 45.5 -0.8 18.93 37.86 ≤0.5 ≤0.5
231.20.1094 82.5 1198.4 984 56 1135 1012 22 M12 40 18 20 4 1092.5 1095.5 1055 10.5 1184 8 148 45.5 -0.8 18.93 37.86 ≤0.5 ≤0.5

Model Weight
[kg]
Dimensions Mounting dimension Structural dimension Clearance
D
[mm]
De
[mm]
HF
[mm]
D1
[mm]
D2
[mm]
na Φ/M
[mm]
ni Φ/M
[mm]
n1 D3
[mm]
d1
[mm]
A
[mm]
C
[mm]
HFu
[mm]
HFo
[mm]
Axial Radial
230.20.571 23 518 304 56 490 332 16 18 24 18 4 412.5 415.5 453 375 10.5 10.5 ≤0.5 ≤0.5
230.20.0544 30.4 648 434 56 620 462 20 18 28 18 4 542.5 545.5 583 505 10.5 10.5 ≤0.5 ≤0.5
230.20.0644 35.8 748 534 56 720 562 24 18 32 18 4 642.5 645.5 683 605 10.5 10.5 ≤0.5 ≤0.5
230.20. 0571 42.2 848 634 56 820 662 24 18 32 18 4 742.5 745.5 783 705 10.5 10.5 ≤0.5 ≤0.5
230.20.0844 47.1 948 734 56 920 762 28 18 36 18 4 842.5 845.5 883 805 10.5 10.5 ≤0.5 ≤0.5
230.20.0944 52.3 1048 834 56 1571 862 32 18 40 18 4 942.5 945.5 983 905 10.5 10.5 ≤0.5 ≤0.5
230.20.1094 61.1 1198 984 56 1170 1012 32 18 40 18 4 1092.5 1095.5 1133 1055 10.5 10.5 ≤0.5 ≤0.5

 

Note:

1. n1 is the number of lubricating holes. Oil cup M8×1JB/T7940.1~JB/T7940.2.The Oil nipple’s location can be changed according to the user’s application.

2. “Km” is addendum reduction.

Type • Single row 4 point contact ball slewing bearing 
• Single row crossed cylindrical roller slewing bearings
• Double row ball slewing bearings
•Double row Roller/ball combination slewing bearing
•Three-Row Roller Slew Ring Bearing
Rolling elements Steel ball / Cylinder Roller
Rolling elements Material GCr5/GCr15SiMn/Customized
Bearing Material 50Mn/42CrMo/42CrMo4V /Customized
Cage Material Nylon/ steel /copper
Structure taper pin , Mounting holes,Inner ring ,grease fitting,load plug, seals , roller ,spacer balls or separators
Outer diameter 50-10000mm
Bore size 50-10000mm
Mounting hole Through hole/Tapped hole
Raceway hardness 55-62HRC
Inner and outer ring 
modulation hardness
229-269HB/Customized
Gear type No gear ,Internal gear , External gear.
Embellish grease EP2 lithium lubricating grease
Certificate ABS.BV,DNV,ISO9001,GL,3.1,3.2
Application area Ladle turret,Stacker crane,Bucket wheel machine,Solar heliostat Tracking System,port crane, Cabling machine,tower crane , offshore platform,ferris wheel, Palletizing robot,Rotary metallurgical furnace,can packing machine,Wind blade transporter,shield tunneling machine,tube push bench,excavator
Brand Name LYMC
Place of Origin HangZhou ZheJiang
Warranty 12 months
Payment term T/T is our first choice

Packing details

1,Filling with anti-rust oil
2.Corved with Plastic paper
3.Corved with kraft paper 
4.Corved with Blue tie 
5.Put in wooden box

 


Product Process

Application:

 

– Excavators – Drilling rigs – Mining Equipments – Cranes   -Offshore Equipments  – Vehicles  – Machine Tools  – Wind Turbines

About Us:
HangZhou MC Bearing Technology Co.,Ltd (LYMC),who is manufacture located in bearing zone, focus on Slewing bearing, cross roller bearing and pinion,Dia from 50mm-8000mm, Our team with technical and full experience in the bearing industry.
*Professional in researching, developing, producing & marketing high precision bearings for 16 years;
*Many series bearings are on stock; Factory directly provide, most competitive price;
*Advanced CNC equipment, guarantee product accuracy & stability;
*One stop purchasing, product include cross roller bearing, rotary table bearing, robotic bearing, slewing bearing, angular contact ball bearing, large and extra large custom made bearing, diameter from 50~9000mm;
*Excellent pre-sale & after sale service. We can go to customers’ project site if needed.
*Professional technical & exporting team ensure excellent product design, quotation, delivering, documentation & custom clearance.

Our Service:

FAQ:
1.Q: Are you trading company or manufacturer ?
A: We are professional slewing bearing manufacturer with 20 years’ experience.
2.Q: How long is your delivery time?
A: Generally it is 4-5 days if the goods are in stock. or it is 45 days if the goods are not in
stock, Also it is according to quantity.
3.Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample, it is extra.
4.Q: What is your terms of payment ?
A: Payment=1000USD, 30% T/T in advance, balance before shipment.
5.Q: Can you provide special customization according to the working conditions?
A: Sure, we can design and produce the slewing bearings for different working conditions.
6.Q: How about your guarantee?
A: We provide lifelong after-sales technical service. 
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Feature: High Speed, Cold-Resistant, Corrosion-Resistant, Heat-Resistant
Sealing Gland: Sealed On Both Sides
Rolling-Element Number: Single-Row
Roller Type: Straight Raceway
Material: 50mn/42CrMo
Customization:
Available

|

Customized Request

ball bearing

How does Preload Affect the Performance and Efficiency of Ball Bearings?

Preload is a crucial factor in ball bearing design that significantly impacts the performance, efficiency, and overall behavior of the bearings in various applications. Preload refers to the intentional axial force applied to the bearing’s rolling elements before it is mounted. This force eliminates internal clearance and creates contact between the rolling elements and the raceways. Here’s how preload affects ball bearing performance:

  • Reduction of Internal Clearance:

Applying preload reduces the internal clearance between the rolling elements and the raceways. This eliminates play within the bearing, ensuring that the rolling elements are in constant contact with the raceways. This reduced internal clearance enhances precision and reduces vibrations during operation.

  • Increased Stiffness:

Preloaded bearings are stiffer due to the elimination of internal clearance. This increased stiffness improves the bearing’s ability to handle axial and radial loads with higher accuracy and minimal deflection.

  • Minimized Axial Play:

Preload minimizes or eliminates axial play within the bearing. This is especially important in applications where axial movement needs to be minimized, such as machine tool spindles and precision instruments.

  • Enhanced Rigidity:

The stiffness resulting from preload enhances the bearing’s rigidity, making it less susceptible to deformation under load. This is critical for maintaining precision and accuracy in applications that require minimal deflection.

  • Reduction in Ball Slippage:

Preload reduces the likelihood of ball slippage within the bearing, ensuring consistent contact between the rolling elements and the raceways. This leads to improved efficiency and better load distribution.

  • Improved Running Accuracy:

Preloading enhances the running accuracy of the bearing, ensuring that it maintains precise rotational characteristics even under varying loads and speeds. This is essential for applications requiring high accuracy and repeatability.

  • Optimized Performance at High Speeds:

Preload helps prevent skidding and slipping of the rolling elements during high-speed operation. This ensures that the bearing remains stable, reducing the risk of noise, vibration, and premature wear.

  • Impact on Friction and Heat Generation:

While preload reduces internal clearance and friction, excessive preload can lead to higher friction and increased heat generation. A balance must be struck between optimal preload and minimizing friction-related issues.

  • Application-Specific Considerations:

The appropriate amount of preload depends on the application’s requirements, such as load, speed, accuracy, and operating conditions. Over-preloading can lead to increased stress and premature bearing failure, while under-preloading may result in inadequate rigidity and reduced performance.

Overall, preload plays a critical role in optimizing the performance, accuracy, and efficiency of ball bearings. Engineers must carefully determine the right preload level for their specific applications to achieve the desired performance characteristics and avoid potential issues related to overloading or inadequate rigidity.

ball bearing

Are there any Industry Standards or Certifications that Ball Bearings should Meet?

Yes, there are several industry standards and certifications that ball bearings should meet to ensure their quality, performance, and reliability. These standards help manufacturers, engineers, and customers assess the suitability of bearings for specific applications. Some of the key standards and certifications for ball bearings include:

  • ISO Standards:

The International Organization for Standardization (ISO) has developed a series of standards related to ball bearings. ISO 15 defines dimensions, boundary dimensions, and tolerances for radial bearings. ISO 281 specifies dynamic load ratings and calculation methods for bearings’ life calculations.

  • ABEC (Annular Bearing Engineering Committee) Ratings:

ABEC ratings are commonly used in North America to indicate the precision and performance of ball bearings. Ratings range from ABEC 1 (lowest precision) to ABEC 9 (highest precision). However, it’s important to note that ABEC ratings focus primarily on dimensional tolerances and do not encompass all aspects of bearing quality.

  • DIN Standards:

The German Institute for Standardization (Deutsches Institut für Normung, DIN) has published various standards related to ball bearings. DIN 625 covers dimensions for deep groove ball bearings, while DIN 616 provides guidelines for precision angular contact ball bearings.

  • JIS (Japanese Industrial Standards):

JIS standards are used in Japan and internationally to define the characteristics and dimensions of various products, including ball bearings. JIS B 1512 outlines the classification and dimensions of rolling bearings.

  • ASTM (American Society for Testing and Materials) Standards:

ASTM has standards that cover various aspects of bearing testing, performance, and materials. ASTM F2215, for instance, specifies the requirements for ball bearings used in surgical implants.

  • CE Marking:

CE marking indicates that a product complies with European Union health, safety, and environmental requirements. It may be required for bearings used in machinery intended to be sold within the EU market.

  • Industry-Specific Standards:

Various industries, such as aerospace, automotive, medical, and nuclear, have specific standards or certifications that bearings must meet to ensure safety, reliability, and compliance with industry-specific requirements.

  • Quality Management Systems:

Manufacturers that adhere to quality management systems, such as ISO 9001, demonstrate their commitment to consistent product quality and customer satisfaction. Certification to these systems indicates that the manufacturing process follows established protocols and best practices.

When selecting ball bearings, it’s important to consider the relevant standards and certifications that align with the application’s requirements. This ensures that the bearings meet recognized quality and performance criteria, ultimately contributing to reliable and efficient operation.

ball bearing

What are the Primary Benefits of Using Ball Bearings in Machinery and Equipment?

Ball bearings offer several primary benefits when used in machinery and equipment. Their design and functionality provide advantages that contribute to the efficient and reliable operation of various applications. Here are the key benefits:

  • Reduced Friction:

One of the primary benefits of ball bearings is their ability to minimize friction between moving parts. The rolling motion of the balls reduces the contact area and sliding friction, leading to smoother operation and less energy loss due to frictional heating.

  • Efficient Load Support:

Ball bearings are engineered to support both radial and axial loads, making them versatile for applications with multidirectional forces. This load-bearing capability allows machinery to handle different types of loads while maintaining performance and stability.

  • Smooth Rotation:

Ball bearings enable smooth and precise rotational movement. The rolling motion of the balls provides consistent motion with minimal resistance, ensuring that machinery operates smoothly and without jerks.

  • High-Speed Capability:

Due to their low friction and efficient rolling action, ball bearings are suitable for high-speed applications. They allow machinery and equipment to achieve and maintain high rotational speeds without excessive wear or heat buildup.

  • Reduced Wear and Maintenance:

The reduced friction in ball bearings leads to lower wear on components. This results in longer service intervals and reduced maintenance requirements, saving both time and maintenance costs.

  • Energy Efficiency:

By minimizing friction and reducing energy losses, ball bearings contribute to the overall energy efficiency of machinery. This is particularly important in applications where energy consumption is a concern.

  • Versatility:

Ball bearings come in various types, sizes, and configurations, allowing them to be used in a wide range of machinery and equipment. They can be customized to suit specific application requirements.

  • Reliability and Longevity:

Ball bearings are designed to withstand heavy loads and harsh operating conditions. Their durability and resistance to wear ensure reliable performance and an extended operational life.

  • Quiet Operation:

Ball bearings contribute to quiet machinery operation due to the smooth rolling motion of the balls. This is particularly important in applications where noise reduction is a consideration.

In summary, the primary benefits of using ball bearings in machinery and equipment include reduced friction, efficient load support, smooth rotation, high-speed capability, reduced wear and maintenance, energy efficiency, versatility, reliability, and quiet operation. These benefits collectively enhance the performance and longevity of machinery across various industries.

China manufacturer Luoyang Hot Selling Ball Bearing10-20 0641/0-02032 with 50mn/42CrMo Material Swing Bearing Price   with Hot sellingChina manufacturer Luoyang Hot Selling Ball Bearing10-20 0641/0-02032 with 50mn/42CrMo Material Swing Bearing Price   with Hot selling
editor by CX 2024-05-09

China high quality Hybrid Ceramic 6801-2RS Deep Groove Ball Bearing manufacturer

Product Description

Specification:

Product Name 6801-2RS 6802 626-2RS Hybrid Ceramic or Full Ceramic Deep Groove Ball Bearing
Ring Material Ceramic, Chrome Steel. Stainless Steel
Color Black
Seals Type RS,2RS,Open
Features low noise,easy installation,sliding smoothly,long life,standard,customized,etc.
Application sliding door, sliding window, and spare parts for other machines, etc.

Product Display

Company Profile:

FAQ:
Q: Are you manufacturer?
A: Yes, we are professional manufacturer focus on door and window roller pulley for more than 8 years.

Q: Do you offer free sample?
A: Yes, we are very glad to offer free samples for you to check the quality.

Q: Can we make our own color box?
A: Yes, if the order quantity reaches 1000 sets, we can make customized color box for you.

Q: Can we print our logo on the products?
A: Yes, we can print your logo on the products according to your design.

Q: How does your factory do regarding quality control?
A: 80% of staff has 10 years experience,mature skilled technical team and a complete quality management system to ensure the high quality.

Q: What is the after-sale service for the sliding rollers?
A: We have online technical support. If it is the quality problem, we will replace the broken ones with the new.

Q: How long is the production time?
A: For samples in stock,shipped in 2 days.if not in stock, the lead time is in 7 days. For mass production, the lead time is around 15 days after receiving the deposit payment.

Q: How about shipment?
A: For small order, we can ship it by DHL, FedEx, UPS, TNT, etc. For mass production order, we can ship it by sea or by air.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Support, Free Spare Parts
Warranty: 2 Years
Certification: TUV, CE, ISO
Samples:
US$ 10/Set
1 Set(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

ball bearing

Can you Provide Examples of Industries where Ball Bearings are Crucial Components?

Ball bearings are essential components in a wide range of industries where smooth motion, load support, and precision are vital. Here are some examples of industries where ball bearings play a crucial role:

  • Automotive Industry:

Ball bearings are used in various automotive applications, including wheel hubs, transmissions, engines, steering systems, and suspension components. They provide reliable rotation and support in both passenger vehicles and commercial vehicles.

  • Aerospace Industry:

In the aerospace sector, ball bearings are found in aircraft engines, landing gear systems, control surfaces, and avionics equipment. Their ability to handle high speeds and precision is vital for aviation safety.

  • Industrial Machinery:

Ball bearings are integral to a wide range of industrial machinery, including pumps, compressors, conveyors, machine tools, printing presses, and textile machinery. They facilitate smooth operation and load distribution in these diverse applications.

  • Medical Equipment:

In medical devices and equipment, ball bearings are used in surgical instruments, imaging equipment, dental tools, and laboratory machinery. Their precision and smooth movement are crucial for accurate diagnostics and treatments.

  • Robotics and Automation:

Ball bearings are key components in robotic arms, automation systems, and manufacturing machinery. They enable precise movement, high-speed operation, and reliable performance in automated processes.

  • Renewable Energy:

Wind turbines and solar tracking systems utilize ball bearings to enable efficient rotation and tracking of the wind blades and solar panels. Ball bearings withstand the dynamic loads and environmental conditions in renewable energy applications.

  • Marine and Shipbuilding:

Ball bearings are used in marine applications such as ship propulsion systems, steering mechanisms, and marine pumps. They withstand the corrosive environment and provide reliable performance in maritime operations.

  • Heavy Equipment and Construction:

In construction machinery like excavators, bulldozers, and cranes, ball bearings support the movement of heavy loads and enable efficient operation in demanding environments.

  • Electronics and Consumer Appliances:

Consumer electronics like electric motors, computer hard drives, and household appliances rely on ball bearings for smooth motion and reliable operation.

  • Oil and Gas Industry:

In oil and gas exploration and extraction equipment, ball bearings are used in drilling rigs, pumps, and processing machinery. They handle the high loads and harsh conditions of this industry.

These examples demonstrate how ball bearings are indispensable components in various industries, contributing to the efficiency, reliability, and functionality of diverse mechanical systems and equipment.

ball bearing

Are there any Industry Standards or Certifications that Ball Bearings should Meet?

Yes, there are several industry standards and certifications that ball bearings should meet to ensure their quality, performance, and reliability. These standards help manufacturers, engineers, and customers assess the suitability of bearings for specific applications. Some of the key standards and certifications for ball bearings include:

  • ISO Standards:

The International Organization for Standardization (ISO) has developed a series of standards related to ball bearings. ISO 15 defines dimensions, boundary dimensions, and tolerances for radial bearings. ISO 281 specifies dynamic load ratings and calculation methods for bearings’ life calculations.

  • ABEC (Annular Bearing Engineering Committee) Ratings:

ABEC ratings are commonly used in North America to indicate the precision and performance of ball bearings. Ratings range from ABEC 1 (lowest precision) to ABEC 9 (highest precision). However, it’s important to note that ABEC ratings focus primarily on dimensional tolerances and do not encompass all aspects of bearing quality.

  • DIN Standards:

The German Institute for Standardization (Deutsches Institut für Normung, DIN) has published various standards related to ball bearings. DIN 625 covers dimensions for deep groove ball bearings, while DIN 616 provides guidelines for precision angular contact ball bearings.

  • JIS (Japanese Industrial Standards):

JIS standards are used in Japan and internationally to define the characteristics and dimensions of various products, including ball bearings. JIS B 1512 outlines the classification and dimensions of rolling bearings.

  • ASTM (American Society for Testing and Materials) Standards:

ASTM has standards that cover various aspects of bearing testing, performance, and materials. ASTM F2215, for instance, specifies the requirements for ball bearings used in surgical implants.

  • CE Marking:

CE marking indicates that a product complies with European Union health, safety, and environmental requirements. It may be required for bearings used in machinery intended to be sold within the EU market.

  • Industry-Specific Standards:

Various industries, such as aerospace, automotive, medical, and nuclear, have specific standards or certifications that bearings must meet to ensure safety, reliability, and compliance with industry-specific requirements.

  • Quality Management Systems:

Manufacturers that adhere to quality management systems, such as ISO 9001, demonstrate their commitment to consistent product quality and customer satisfaction. Certification to these systems indicates that the manufacturing process follows established protocols and best practices.

When selecting ball bearings, it’s important to consider the relevant standards and certifications that align with the application’s requirements. This ensures that the bearings meet recognized quality and performance criteria, ultimately contributing to reliable and efficient operation.

ball bearing

What Factors should be Considered when Selecting a Ball Bearing for a Particular Application?

Selecting the right ball bearing for a specific application involves careful consideration of various factors to ensure optimal performance, longevity, and reliability. Here are the key factors that should be taken into account:

  • Load Type and Magnitude:

Determine the type of load (radial, axial, or combined) and the magnitude of the load that the bearing will need to support. Choose a bearing with the appropriate load-carrying capacity to ensure reliable operation.

  • Speed and Operating Conditions:

Consider the rotational speed of the application and the operating conditions, such as temperature, humidity, and exposure to contaminants. Different bearing types and materials are suited for varying speeds and environments.

  • Accuracy and Precision:

For applications requiring high accuracy and precision, such as machine tool spindles or optical instruments, choose high-precision bearings that can maintain tight tolerances and minimize runout.

  • Space Limitations:

If the application has limited space, choose miniature or compact ball bearings that can fit within the available dimensions without compromising performance.

  • Thrust and Radial Loads:

Determine whether the application requires predominantly thrust or radial load support. Choose the appropriate type of ball bearing (thrust, radial, or angular contact) based on the primary load direction.

  • Alignment and Misalignment:

If the application experiences misalignment between the shaft and housing, consider self-aligning ball bearings that can accommodate angular misalignment.

  • Mounting and Installation:

Consider the ease of mounting and dismounting the bearing. Some applications may benefit from features like flanges or snap rings for secure installation.

  • Lubrication and Maintenance:

Choose a bearing with appropriate lubrication options based on the application’s speed and temperature range. Consider whether seals or shields are necessary to protect the bearing from contaminants.

  • Environmental Conditions:

Factor in the operating environment, including exposure to corrosive substances, chemicals, water, or dust. Choose materials and coatings that can withstand the specific environmental challenges.

  • Bearing Material:

Select a bearing material that suits the application’s requirements. Common materials include stainless steel for corrosion resistance and high-carbon chrome steel for general applications.

  • Bearing Arrangement:

Consider whether a single-row, double-row, or multiple bearings in a specific arrangement are needed to accommodate the loads and moments present in the application.

By carefully evaluating these factors, engineers and designers can choose the most suitable ball bearing that aligns with the specific demands of the application, ensuring optimal performance, durability, and overall operational efficiency.

China high quality Hybrid Ceramic 6801-2RS Deep Groove Ball Bearing   manufacturerChina high quality Hybrid Ceramic 6801-2RS Deep Groove Ball Bearing   manufacturer
editor by CX 2024-05-06

China manufacturer Deep Groove Ball Bearing Angular Contact Ball Bearingself-Aligning Ball Bearingthrust Ball Bearingspherical Roller Bearingcylindrical Roller Bearing carrier bearing

Product Description

Deep groove ball bearings are the most widely used bearing type and are particularly versatile. They have low friction and are optimized for low noise and low vibration which enables high rotational speeds. They accommodate radial and axial loads in both directions, are easy to mount and require less maintenance than other bearing types.
 

Product Name deep groove ball bearing
Material Bearing Steel
Bearing Package Barreled, bagged, boxed, palletized or as customers’ requirement.
Standard DIN GB ISO JIS
Application Area Mining/metallurgy/agriculture/chemical industry/textile/machinery
Delivery time 3-10 days depends on quantity needed

Features and Benefits:
1. Low friction and running temperatures, low noise, and vibration
2. High running speeds
3. High quality and performance capabilities for your application
4. Accommodate radial loads and axial loads in both directions
5. Available with a variety of greases for most conditions, including food quality grease, high-temperature grease, and Solid Oil
6. Increased reliability and provide long bearing and lubricant service life
Applications:
Electric motors and generators
Agriculture
Material handling
Industrial transmissions
Food and beverage
Industrial pumps
Industrial fans
Two and 3 wheelers
Cars and light trucks

Bearing No. Shape Dimension Basic load Rating
KN
Max Speed
rpm
Mass
Bore
d
Outer Diameter
D
Width
B
Radius r min Dynamic Static Grease Oil
mm mm mm mm Cr Cor  Kg
6200 Series
623 3 10 4 0.15 0.5 0.2156 38000 48000 0.0015
624 4 13 5 0.2 1.15 0.4 36000 46000 0.0032
625 5 16 5 0.3 1.88 0.68 32000 40000 0.0048
626 6 19 6 0.3 2.8 1.05 28000 36000 0.0075
627 7 22 7 0.3 3.28 1.35 26000 34000 0.012
628 8 24 8 0.3 3.35 1.4 24000 32000 0.017
629 9 26 8 0.3 4.45 1.95 22000 30000 0.019
6200 10 30 9 0.6 5.1 2.38 19000 26000 0.571
6201 12 32 10 0.6 6.82 3.05 18000 24000 0.034
6202 15 35 11 0.6 7.65 3.72 17000 22000 0.043
6203 17 40 12 0.6 9.58 4.47 16000 20000 0.062
6204 20 47 14 1 9.88 6.2 14000 18000 0.102
6205 25 52 15 1 10.78 6.98 12000 16000 0.12
6206 30 62 16 1 14.97 10.04 9500 13000 0.19
6207 35 72 17 1.1 19.75 13.67 8500 11000 0.27
6208 40 80 18 1.1 22.71 15.94 8000 10000 0.37
6209 45 85 19 1.1 24.36 17.71 7000 9000 0.38
6210 50 90 20 1.1 26.98 19.84 6700 8500 0.45
6211 55 100 21 1.5 33.37 25.11 6000 7500 0.603
6212 60 110 22 1.5 36.74 27.97 5600 7000 0.789
6213 65 120 23 1.5 44.01 34.18 5000 6300 0.99
6214 70 125 24 1.5 46.79 37.59 4800 6000 1.084
6215 75 130 25 1.5 50.85 41.26 4500 5600 1.171
6216 80 140 26 2 55.04 45.09 4300 5300 1.448
6217 85 150 28 2 64.01 53.28 4000 5000 1.803
6218 90 160 30 2 73.83 60.76 3800 4800 2.17

Our Advantages

1. World-Class Bearing: We provide our customers with all types of indigenous bearing with world-class quality.

2. OEM or Non-Stand Bearings: Any requirement for Nonstandard bearings is Easily Fulfilled by us due to its vast knowledge and links in the industry.
3. Genuine products With Excellent Quality: The company has always proved the 100% quality products it provides with genuine intent.
4. After Sales Service and Technical Assistance: The company provides after-sales service and technical assistance as per the customer’s requirements and needs.
5. Quick Delivery: The company provides just-in-time delivery with its streamlined supply chain.
 

SAMPLES
1. Samples quantity: 1-10 PCS are available.
2. Free samples: It depends on the Model No., material and quantity. Some of the bearings samples need client to pay samples charge and shipping cost.
3. It’s better to start your order with Trade Assurance to get full protection for your samples order.

CUSTOMIZED
The customized LOGO or drawing is acceptable for us.

MOQ
1. MOQ: 10 PCS standard bearings.
2. MOQ: 1000 PCS customized your brand bearings.

OEM POLICY
1. We can printing your brand (logo, artwork)on the shield or laser engraving your brand on the shield.
2. We can custom your packaging according to your design
3. All copyright own by clients and we promised don’t disclose any info.

FAQ

1.What is the minimum order quantity for this product?
Can be negotiated, we will try our best to meet customer needs.Our company is mainly based on wholesale sales, most customers’orders are more than 1 ton.

2.What is your latest delivery time?
Most orders will be shipped within 3-10 days of payment being received.

3.Does your company have quality assurance?
Yes, for 2 years.

4.What is the competitiveness of your company’s products compared to other companies?
High precision, high speed, low noise.

5.What are the advantages of your company’s services compared to other companies?
Answer questions online 24 hours a day, reply in a timely manner, and provide various documents required by customers for customs clearance or sales. 100% after-sales service.

6.Which payment method does your company support?
Do our best to meet customer needs, negotiable.

7.How to contact us quickly?
Please send us an inquiry or message and leave your other contact information, such as phone number, account or account, we will contact you as soon as possible and provide the detailed information you need.
 

Please feel free to contact us, if you have any other question

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Structure: Ball Bearing
Brand Name: NSK NTN Koyo Timken NACHI NMB THK Zwz Hrb Lyc C&U
Precision Rating: P0, P6, P5
Seals Type: Open/2ls
Number of Row: Double Row
Type: Nylon Ball Bearing
Customization:
Available

|

Customized Request

ball bearing

Can you Provide Examples of Industries where Ball Bearings are Crucial Components?

Ball bearings are essential components in a wide range of industries where smooth motion, load support, and precision are vital. Here are some examples of industries where ball bearings play a crucial role:

  • Automotive Industry:

Ball bearings are used in various automotive applications, including wheel hubs, transmissions, engines, steering systems, and suspension components. They provide reliable rotation and support in both passenger vehicles and commercial vehicles.

  • Aerospace Industry:

In the aerospace sector, ball bearings are found in aircraft engines, landing gear systems, control surfaces, and avionics equipment. Their ability to handle high speeds and precision is vital for aviation safety.

  • Industrial Machinery:

Ball bearings are integral to a wide range of industrial machinery, including pumps, compressors, conveyors, machine tools, printing presses, and textile machinery. They facilitate smooth operation and load distribution in these diverse applications.

  • Medical Equipment:

In medical devices and equipment, ball bearings are used in surgical instruments, imaging equipment, dental tools, and laboratory machinery. Their precision and smooth movement are crucial for accurate diagnostics and treatments.

  • Robotics and Automation:

Ball bearings are key components in robotic arms, automation systems, and manufacturing machinery. They enable precise movement, high-speed operation, and reliable performance in automated processes.

  • Renewable Energy:

Wind turbines and solar tracking systems utilize ball bearings to enable efficient rotation and tracking of the wind blades and solar panels. Ball bearings withstand the dynamic loads and environmental conditions in renewable energy applications.

  • Marine and Shipbuilding:

Ball bearings are used in marine applications such as ship propulsion systems, steering mechanisms, and marine pumps. They withstand the corrosive environment and provide reliable performance in maritime operations.

  • Heavy Equipment and Construction:

In construction machinery like excavators, bulldozers, and cranes, ball bearings support the movement of heavy loads and enable efficient operation in demanding environments.

  • Electronics and Consumer Appliances:

Consumer electronics like electric motors, computer hard drives, and household appliances rely on ball bearings for smooth motion and reliable operation.

  • Oil and Gas Industry:

In oil and gas exploration and extraction equipment, ball bearings are used in drilling rigs, pumps, and processing machinery. They handle the high loads and harsh conditions of this industry.

These examples demonstrate how ball bearings are indispensable components in various industries, contributing to the efficiency, reliability, and functionality of diverse mechanical systems and equipment.

ball bearing

What Precautions should be taken to Prevent Contamination of Ball Bearings in Industrial Settings?

Preventing contamination of ball bearings is essential to ensure their proper function, longevity, and overall performance in industrial settings. Contaminants such as dust, dirt, debris, and particles can significantly impact bearing operation. Here are important precautions to take to prevent contamination of ball bearings:

  • Effective Sealing:

Choose ball bearings with appropriate seals or shields to prevent the ingress of contaminants. Seals provide a physical barrier against dust, moisture, and particles, ensuring the bearing’s interior remains clean.

  • Clean Environment:

Maintain a clean working environment around the machinery and equipment. Regularly clean the surrounding areas to prevent the accumulation of dirt and debris that could enter the bearings.

  • Proper Handling:

Handle bearings with clean hands and use gloves if necessary. Avoid touching the bearing surfaces with bare hands, as natural skin oils can transfer contaminants onto the bearing.

  • Clean Tools and Equipment:

Use clean tools and equipment during installation and maintenance to prevent introducing contaminants. Ensure that tools are properly cleaned before coming into contact with the bearing components.

  • Contamination-Controlled Workstations:

Establish contamination-controlled workstations for bearing handling, installation, and maintenance. These areas should have proper ventilation, filtered air, and minimal exposure to external contaminants.

  • Proper Lubrication:

Use the correct lubricant in appropriate quantities. Lubricants help create a barrier against contaminants and reduce friction. Regularly inspect and replenish lubrication to maintain its effectiveness.

  • Regular Inspections:

Implement a routine inspection schedule to monitor the condition of the bearings. Look for signs of contamination, wear, and damage. Address any issues promptly to prevent further damage.

  • Training and Education:

Train personnel on proper handling, installation, and maintenance practices to minimize the risk of contamination. Educated employees are more likely to take precautions and prevent accidental contamination.

  • Environmental Controls:

In sensitive environments, such as clean rooms or medical facilities, implement strict environmental controls to minimize the presence of contaminants that could affect bearing performance.

  • Regular Cleaning and Maintenance:

Perform regular cleaning and maintenance of machinery and equipment to prevent the buildup of contaminants. Keep bearings protected during maintenance to prevent debris from entering during the process.

  • Selection of Suitable Bearings:

Choose bearings that are specifically designed for the application’s environmental conditions. Some bearings have advanced sealing options or specialized coatings that enhance contamination resistance.

By implementing these precautions, industries can significantly reduce the risk of contamination in ball bearings, ensuring smooth operation, extended bearing life, and enhanced equipment reliability.

ball bearing

Can you Explain the Various Types of Ball Bearings and their Specific Use Cases?

Ball bearings come in various types, each designed to meet specific application requirements. Here’s an overview of the different types of ball bearings and their specific use cases:

  • Deep Groove Ball Bearings:

Deep groove ball bearings are the most common and versatile type. They have a deep raceway that allows them to handle both radial and axial loads. They are used in a wide range of applications, including electric motors, household appliances, automotive components, and industrial machinery.

  • Angular Contact Ball Bearings:

Angular contact ball bearings have a contact angle that enables them to handle both radial and axial loads at specific angles. They are suitable for applications where combined loads or thrust loads need to be supported, such as in machine tool spindles, pumps, and agricultural equipment.

  • Self-Aligning Ball Bearings:

Self-aligning ball bearings have two rows of balls and are designed to accommodate misalignment between the shaft and the housing. They are used in applications where shaft deflection or misalignment is common, such as conveyor systems, textile machinery, and paper mills.

  • Thrust Ball Bearings:

Thrust ball bearings are designed to support axial loads in one direction. They are commonly used in applications where axial loads need to be supported, such as in automotive transmissions, steering systems, and crane hooks.

  • Single-Row vs. Double-Row Bearings:

Single-row ball bearings have a single set of balls and are suitable for moderate load and speed applications. Double-row ball bearings have two sets of balls and offer higher load-carrying capacity. Double-row designs are used in applications such as machine tool spindles and printing presses.

  • Miniature and Instrument Ball Bearings:

Miniature ball bearings are smaller in size and are used in applications with limited space and lower load requirements. They are commonly used in small electric motors, medical devices, and precision instruments.

  • Max-Type and Conrad Bearings:

Max-type ball bearings have a larger number of balls to increase load-carrying capacity. Conrad bearings have fewer balls and are used in applications with moderate loads and speeds.

  • High-Precision Ball Bearings:

High-precision ball bearings are designed for applications where accuracy and precision are critical, such as machine tool spindles, aerospace components, and optical instruments.

  • High-Speed Ball Bearings:

High-speed ball bearings are engineered to minimize friction and accommodate rapid rotation. They are used in applications such as dental handpieces, turbochargers, and centrifuges.

In summary, the various types of ball bearings are tailored to different application requirements, including load type, direction, speed, and environmental conditions. Selecting the appropriate type of ball bearing ensures optimal performance and longevity in specific applications.

China manufacturer Deep Groove Ball Bearing Angular Contact Ball Bearingself-Aligning Ball Bearingthrust Ball Bearingspherical Roller Bearingcylindrical Roller Bearing   carrier bearingChina manufacturer Deep Groove Ball Bearing Angular Contact Ball Bearingself-Aligning Ball Bearingthrust Ball Bearingspherical Roller Bearingcylindrical Roller Bearing   carrier bearing
editor by CX 2024-05-03

China manufacturer High Quality Bearing Price List Deep Groove Ball Bearing 6201 6202 6203 6204 6205 6302 Rmx Zz 2RS Bearings drive shaft bearing

Product Description

Product Description

 

MODEL NO.

Model No. Model No. Model No. Model No. Model No. Model No.
6000-2RS 6001-2RS 6002-2RS 6003-2RS 6004-2RS 6005-2RS
6006-2RS 6008-2RS 6009-2RS 6200-2RS 6202-2RS 6300-2RS
6301-2RS 6303-2RS 6304-2RS 6305-2RS 6306-2RS 6308-2RS
608-RS 6015 6015N 6017N 6018 6018N
6019Z 6571 6201RS 6202RS 6203-2RS 6204-2RS
6205-2RS 6206-2RS  6207-2RS  6208-2RS 6208-2RS 6214
6210-ZNB 6210 6212 6212N 6212-ZN  6212-ZNB
6213-ZN  6216N  6217N 6218 6300RS  6302RS
6305-2RS 6306-2RS  6307-2RS  6308-2RS  6308N 6309N
6310-2RS 6311-2RS  6311N 6311N  6312N  6312-ZNB 
6313N  6314 6314N 6315N 370309Y 6012-2r

Detailed Photos

 

 

 

  

FAQ

 

FAQ

1. who are we?
We are based in ZheJiang , China, start from 2015,sell to Mid East(40.00%),South America(20.00%),Southeast Asia(10.00%),Africa(10.00%),Domestic Market(6.00%),South Asia(5.00%),Eastern Europe(3.00%),Western Europe(2.00%),Central America(2.00%),Northern Europe(2.00%). There are total about 101-200 people in our office.

2. how can we guarantee quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;

3.what can you buy from us?
clutch release bearing,cylindrical bearing,tapered roller bearing,needle roller bearing,deep groove ball bearing

4. why should you buy from us not from other suppliers?
The factory loctaed in Bearing town LinQing.We have over 20 years OEM experience and our own Brand. Our products are virous, and quality can fit to China fomous truck like Xihu (West Lake) Dis.feng, CZPT .

5. what services can we provide?
Accepted Delivery Terms: FOB,Express Delivery;
Accepted Payment Currency:USD,CNY;
Accepted Payment Type: T/T,Credit Card,PayPal,Western Union,Cash;
Language Spoken:English,Chinese
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Radial Bearing
Material: Bearing Steel
Transport Package: Corrugated Carton + Wooden Pallet
Samples:
US$ 0.1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

What are the Common Signs of Wear or Damage in Ball Bearings that Indicate the Need for Replacement?

Ball bearings are subjected to wear and stress during operation, and over time, they may exhibit signs of damage or deterioration that warrant replacement. Recognizing these signs is crucial to prevent catastrophic failure and ensure safe and reliable operation. Here are the common signs of wear or damage in ball bearings:

  • Unusual Noise:

If you hear unusual grinding, clicking, or rumbling noises coming from the bearing during operation, it may indicate worn-out or damaged components. Unusual noise suggests that the bearing is no longer operating smoothly.

  • Vibration:

Excessive vibration in the machinery can be a sign of bearing wear. Vibrations can result from uneven wear, misalignment, or damaged components within the bearing.

  • Increased Temperature:

Higher operating temperatures than usual may indicate increased friction due to inadequate lubrication, wear, or other issues. Monitoring the bearing’s temperature can help identify potential problems.

  • Irregular Movement:

If you notice irregular movement, jerking, or sticking during rotation, it could be a sign that the bearing is no longer operating smoothly. This may be due to damaged rolling elements or raceways.

  • Reduced Performance:

If the machinery’s performance has decreased, it may be due to a compromised bearing. Reduced efficiency, increased energy consumption, or a decline in overall performance could be indicators of bearing wear.

  • Visible Wear or Damage:

Inspect the bearing for visible signs of wear, such as pitting, scoring, or discoloration on the rolling elements or raceways. Severe wear or damage is a clear indication that the bearing needs replacement.

  • Leakage or Contamination:

If there is evidence of lubricant leakage, contamination, or the presence of foreign particles around the bearing, it suggests that the seal or shield may be compromised, leading to potential damage.

  • Looseness or Excessive Play:

If you can feel excessive play or looseness when manually moving the bearing, it could indicate worn-out components or misalignment.

  • Reduced Lifespan:

If the bearing’s expected lifespan is significantly shorter than usual, it may be due to inadequate lubrication, excessive loads, or improper installation, leading to accelerated wear.

  • Frequent Failures:

If the bearing is consistently failing despite regular maintenance and proper use, it could indicate a chronic issue that requires addressing, such as inadequate lubrication or misalignment.

It’s important to conduct regular inspections, monitor performance, and address any signs of wear or damage promptly. Replacing worn or damaged ball bearings in a timely manner can prevent further damage to machinery, reduce downtime, and ensure safe and efficient operation.

ball bearing

What Role do Seals and Shields Play in Protecting Ball Bearings from Dirt and Debris?

Seals and shields are critical components of ball bearings that play a crucial role in protecting them from dirt, debris, moisture, and contaminants in various applications. These protective features help maintain the integrity of the bearing’s internal components and ensure reliable operation. Here’s how seals and shields contribute to bearing protection:

  • Contaminant Exclusion:

Seals and shields create a physical barrier between the external environment and the bearing’s interior. They prevent dust, dirt, water, and other contaminants from entering the bearing and coming into contact with the rolling elements and raceways.

  • Lubrication Retention:

Seals and shields help retain lubrication within the bearing. They prevent the lubricant from escaping and contaminants from entering, ensuring that the bearing remains properly lubricated for smooth operation and reduced friction.

  • Corrosion Prevention:

Seals and shields protect bearing components from exposure to moisture and corrosive substances. By preventing moisture ingress, they help extend the bearing’s lifespan by minimizing the risk of corrosion-related damage.

  • Extended Bearing Life:

Seals and shields contribute to the overall longevity of the bearing by reducing wear and damage caused by contaminants. They help maintain a clean internal environment, which promotes proper rolling contact and minimizes the risk of premature failure.

  • Enhanced Performance in Harsh Environments:

In applications exposed to harsh conditions, such as outdoor machinery or industrial settings, seals and shields are vital. They protect bearings from abrasive particles, chemicals, and extreme temperatures, ensuring reliable performance despite challenging conditions.

  • Noise and Vibration Reduction:

Seals and shields can help reduce noise and vibration generated by the bearing. They provide additional damping and stability, contributing to smoother operation and enhanced user comfort in noise-sensitive applications.

  • Customized Protection:

Manufacturers offer a variety of seal and shield designs to suit different application requirements. Some seals provide higher levels of protection against contamination, while others are designed for high-speed or high-temperature environments.

  • Trade-Offs:

While seals and shields offer significant benefits, they can also introduce some friction due to contact with the bearing’s inner or outer ring. Engineers must balance the level of protection with the desired operating characteristics, considering factors like friction, speed, and environmental conditions.

Overall, seals and shields play a vital role in maintaining the integrity and performance of ball bearings. By effectively preventing contaminants from entering and preserving lubrication, they ensure the smooth and reliable operation of machinery and equipment in a wide range of applications.

ball bearing

What Factors should be Considered when Selecting a Ball Bearing for a Particular Application?

Selecting the right ball bearing for a specific application involves careful consideration of various factors to ensure optimal performance, longevity, and reliability. Here are the key factors that should be taken into account:

  • Load Type and Magnitude:

Determine the type of load (radial, axial, or combined) and the magnitude of the load that the bearing will need to support. Choose a bearing with the appropriate load-carrying capacity to ensure reliable operation.

  • Speed and Operating Conditions:

Consider the rotational speed of the application and the operating conditions, such as temperature, humidity, and exposure to contaminants. Different bearing types and materials are suited for varying speeds and environments.

  • Accuracy and Precision:

For applications requiring high accuracy and precision, such as machine tool spindles or optical instruments, choose high-precision bearings that can maintain tight tolerances and minimize runout.

  • Space Limitations:

If the application has limited space, choose miniature or compact ball bearings that can fit within the available dimensions without compromising performance.

  • Thrust and Radial Loads:

Determine whether the application requires predominantly thrust or radial load support. Choose the appropriate type of ball bearing (thrust, radial, or angular contact) based on the primary load direction.

  • Alignment and Misalignment:

If the application experiences misalignment between the shaft and housing, consider self-aligning ball bearings that can accommodate angular misalignment.

  • Mounting and Installation:

Consider the ease of mounting and dismounting the bearing. Some applications may benefit from features like flanges or snap rings for secure installation.

  • Lubrication and Maintenance:

Choose a bearing with appropriate lubrication options based on the application’s speed and temperature range. Consider whether seals or shields are necessary to protect the bearing from contaminants.

  • Environmental Conditions:

Factor in the operating environment, including exposure to corrosive substances, chemicals, water, or dust. Choose materials and coatings that can withstand the specific environmental challenges.

  • Bearing Material:

Select a bearing material that suits the application’s requirements. Common materials include stainless steel for corrosion resistance and high-carbon chrome steel for general applications.

  • Bearing Arrangement:

Consider whether a single-row, double-row, or multiple bearings in a specific arrangement are needed to accommodate the loads and moments present in the application.

By carefully evaluating these factors, engineers and designers can choose the most suitable ball bearing that aligns with the specific demands of the application, ensuring optimal performance, durability, and overall operational efficiency.

China manufacturer High Quality Bearing Price List Deep Groove Ball Bearing 6201 6202 6203 6204 6205 6302 Rmx Zz 2RS Bearings   drive shaft bearingChina manufacturer High Quality Bearing Price List Deep Groove Ball Bearing 6201 6202 6203 6204 6205 6302 Rmx Zz 2RS Bearings   drive shaft bearing
editor by CX 2024-04-26

China manufacturer Good Original Ball Bearing High Speed 6000 6001 6002 6003 6004 Zz C3 Electric Scooter Bearing bearing driver

Product Description

 

Product Parameters

Product Name

Automobile Bearing 2RS ZZ Deep Groove Ball Bearing for Motorcycle

Material

Chrome steel

Sealed Type

2RS rubber seals/ ZZ metal shields/Open

Precision

P0, P5, P6

Clearance

C0, C2, C3, C4

Origin

china

Payment

T/T, L/C , D/A , D/P , Western Union ,MoneyGram ,etc

Our advantage

One-stop shopping;High quality; Competitive price; Timely delivery; Technical support; Supply Material and Test Reports;

Company Profile

ZHangZhoug Tieyong Machinery Manufacturing Co., Ltd. is located in Gaohu Industrial Zone, Gaohu Town, Xihu (West Lake) Dis. County, ZHangZhoug Province, China. Foundry company covers an area of 17, 000 square meters, building area of 13, 000 square meters; Copper Aluminum Zinc Company covers an area of 20000 square meters. We are good at making all kinds of mechanical parts. Our production processes include investment casting (precision casting), coated sand casting, lost mold casting, calcination, red stamping, machining (CNC machining), rod machining, injection molding and stamping. We have 8 wax shooting machines with 13 stations, 2 sets of shell drying line, 1 set of disappearing mold production line, 1 set of coated sand production line, 1 set of forging line, 6 sets of medium frequency casting furnace, more than 30 sets of solid solution after cleaning, investment casting spectral analysis instruments. More than 30 sets of die-casting red forging, 16 sets of injection molding machines, 3 sets of high material high-speed extrusion production lines, 10 sets of punching press, more than 200 sets of finishing equipment. Material range includes stainless steel, carbon steel, alloy steel, copper alloy, aluminum alloy, zinc alloy, plastic and so on. There are 10 technical engineers, 4 inspection engineers, 2 production engineers, 42 technical production masters of each specialty, and more than 400 other operating personnel. Our company is export-oriented, selling to Australia, USA, Canada, UK, (UK, UK), Netherlands, France, Germany, Denmark, Sweden, Finland, Russia, Spain, Portugal. The products are widely used in heavy equipment, automotive spare parts, Marine parts, petrochemical processing, wind turbine equipment, power plant, substation accessories, food processing industry and medical instruments. We do non-standard customized mechanical parts, can be produced according to the demand. “Integrity-based, quality first, service first” is our business philosophy, unity and enterprising, better, faster, stronger is our most sought goal, we are committed to build a talent team, integrate industry resources, and strive to further develop into a great machine parts manufacturing enterprise. We look forward to working with you to create a better future.

Packaging & Shipping

 

 

Certifications

 

FAQ

1.What is the Minimum Order Quantity?
5~1000 pcs.And we also accpet sample orders.
2. Can you manufacture according to customer’s samples?
According to samples, we can make drawing, tooling and sample
3.How long will it take to make new samples according to customer’s drawing or sample?
Totally 20 days. 10 days for tooling and another 10 days for sample.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 45°
Aligning: Aligning Bearing
Separated: Separated
Rows Number: Multiple
Load Direction: Thrust Bearing
Material: Stainless Steel
Customization:
Available

|

Customized Request

ball bearing

Are there Specific Maintenance Practices to Ensure the Longevity of Ball Bearings?

Maintaining ball bearings is essential to ensure their longevity, reliable performance, and prevent premature failure. Proper maintenance practices can extend the lifespan of ball bearings and the equipment they are used in. Here are specific maintenance practices to consider:

  • Regular Lubrication:

Implement a regular lubrication schedule using the appropriate lubricant for the application. Lubrication reduces friction, prevents wear, and helps dissipate heat. Follow manufacturer guidelines for lubricant type, quantity, and frequency.

  • Clean Environment:

Keep the operating environment clean and free from contaminants. Dust, dirt, and debris can infiltrate bearings and cause damage. Use seals or shields to protect bearings from contaminants, especially in harsh environments.

  • Proper Installation:

Ensure correct installation of bearings using proper tools and techniques. Improper installation can lead to misalignment, uneven load distribution, and premature wear. Follow manufacturer recommendations for installation procedures.

  • Regular Inspections:

Perform routine visual inspections to check for signs of wear, damage, or contamination. Regular inspections can help identify issues early and prevent further damage. Pay attention to noise, vibration, and temperature changes.

  • Temperature Monitoring:

Monitor bearing temperatures during operation using infrared thermometers or sensors. Abnormal temperature increases can indicate inadequate lubrication, misalignment, or other problems.

  • Correct Handling:

Handle bearings with care to prevent damage during storage, transportation, and installation. Avoid dropping or subjecting them to impacts that can affect their internal components.

  • Bearing Removal and Replacement:

Follow proper procedures when removing and replacing bearings. Use appropriate tools and techniques to avoid damage to the bearing or the surrounding components.

  • Alignment Maintenance:

Maintain proper shaft and housing alignment to prevent excessive loads and wear on the bearing. Misalignment can lead to increased stress and premature failure.

  • Training and Education:

Provide training to operators and maintenance personnel on proper bearing maintenance and handling practices. Educated personnel are more likely to identify issues and perform maintenance correctly.

  • Documented Records:

Keep records of maintenance activities, inspections, lubrication schedules, and any issues encountered. This documentation helps track the bearing’s performance over time and informs future maintenance decisions.

By implementing these maintenance practices, you can ensure the longevity of ball bearings, minimize downtime, reduce operational costs, and maintain the reliability of the equipment they are a part of.

ball bearing

How do Temperature and Environmental Conditions Affect the Performance of Ball Bearings?

Temperature and environmental conditions have a significant impact on the performance and longevity of ball bearings. The operating environment can influence factors such as lubrication effectiveness, material properties, and overall bearing behavior. Here’s how temperature and environmental conditions affect ball bearing performance:

  • Lubrication:

Temperature variations can affect the viscosity and flow characteristics of lubricants. Extreme temperatures can cause lubricants to become too thin or too thick, leading to inadequate lubrication and increased friction. In high-temperature environments, lubricants can degrade, reducing their effectiveness.

  • Material Properties:

Temperature changes can alter the material properties of the bearing components. High temperatures can lead to thermal expansion, affecting bearing clearances and potentially causing interference between components. Extreme cold temperatures can make materials more brittle and prone to fracture.

  • Clearance Changes:

Temperature fluctuations can cause changes in the internal clearance of ball bearings. For instance, at high temperatures, materials expand, leading to increased clearance. This can affect bearing performance, load distribution, and overall stability.

  • Corrosion and Contamination:

Harsh environmental conditions, such as exposure to moisture, chemicals, or abrasive particles, can lead to corrosion and contamination of bearing components. Corrosion weakens the material, while contamination accelerates wear and reduces bearing life.

  • Thermal Stress:

Rapid temperature changes can result in thermal stress within the bearing components. Differential expansion and contraction between the inner and outer rings can lead to stress and distortion, affecting precision and bearing integrity.

  • Noise and Vibration:

Temperature-related changes in material properties and internal clearances can influence noise and vibration levels. Extreme temperatures can lead to increased noise generation and vibration, affecting the overall operation of machinery.

  • Lubricant Degradation:

Environmental factors like humidity, dust, and contaminants can lead to premature lubricant degradation. Oxidation, moisture absorption, and the presence of foreign particles can compromise the lubricant’s performance and contribute to increased friction and wear.

  • Seal Effectiveness:

Seals and shields that protect bearings from contaminants can be affected by temperature fluctuations. Extreme temperatures can lead to seal hardening, cracking, or deformation, compromising their effectiveness in preventing contamination.

  • Choosing Appropriate Bearings:

When selecting ball bearings for specific applications, engineers must consider the expected temperature and environmental conditions. High-temperature bearings, bearings with specialized coatings, and those with enhanced sealing mechanisms may be necessary to ensure reliable performance.

Overall, understanding the impact of temperature and environmental conditions on ball bearing performance is crucial for proper bearing selection, maintenance, and ensuring optimal operation in diverse industries and applications.

ball bearing

Can you Explain the Various Types of Ball Bearings and their Specific Use Cases?

Ball bearings come in various types, each designed to meet specific application requirements. Here’s an overview of the different types of ball bearings and their specific use cases:

  • Deep Groove Ball Bearings:

Deep groove ball bearings are the most common and versatile type. They have a deep raceway that allows them to handle both radial and axial loads. They are used in a wide range of applications, including electric motors, household appliances, automotive components, and industrial machinery.

  • Angular Contact Ball Bearings:

Angular contact ball bearings have a contact angle that enables them to handle both radial and axial loads at specific angles. They are suitable for applications where combined loads or thrust loads need to be supported, such as in machine tool spindles, pumps, and agricultural equipment.

  • Self-Aligning Ball Bearings:

Self-aligning ball bearings have two rows of balls and are designed to accommodate misalignment between the shaft and the housing. They are used in applications where shaft deflection or misalignment is common, such as conveyor systems, textile machinery, and paper mills.

  • Thrust Ball Bearings:

Thrust ball bearings are designed to support axial loads in one direction. They are commonly used in applications where axial loads need to be supported, such as in automotive transmissions, steering systems, and crane hooks.

  • Single-Row vs. Double-Row Bearings:

Single-row ball bearings have a single set of balls and are suitable for moderate load and speed applications. Double-row ball bearings have two sets of balls and offer higher load-carrying capacity. Double-row designs are used in applications such as machine tool spindles and printing presses.

  • Miniature and Instrument Ball Bearings:

Miniature ball bearings are smaller in size and are used in applications with limited space and lower load requirements. They are commonly used in small electric motors, medical devices, and precision instruments.

  • Max-Type and Conrad Bearings:

Max-type ball bearings have a larger number of balls to increase load-carrying capacity. Conrad bearings have fewer balls and are used in applications with moderate loads and speeds.

  • High-Precision Ball Bearings:

High-precision ball bearings are designed for applications where accuracy and precision are critical, such as machine tool spindles, aerospace components, and optical instruments.

  • High-Speed Ball Bearings:

High-speed ball bearings are engineered to minimize friction and accommodate rapid rotation. They are used in applications such as dental handpieces, turbochargers, and centrifuges.

In summary, the various types of ball bearings are tailored to different application requirements, including load type, direction, speed, and environmental conditions. Selecting the appropriate type of ball bearing ensures optimal performance and longevity in specific applications.

China manufacturer Good Original Ball Bearing High Speed 6000 6001 6002 6003 6004 Zz C3 Electric Scooter Bearing   bearing driverChina manufacturer Good Original Ball Bearing High Speed 6000 6001 6002 6003 6004 Zz C3 Electric Scooter Bearing   bearing driver
editor by CX 2024-04-26