Tag Archives: spindle bearing

China Hot selling High Speed Spindle Bearing 7030c CZPT Rhp CZPT Bearing 7030c High Quality Sealed Angular Contact Thrust Ball Bearing 7030c manufacturer

Product Description

Product Description

Angular contact ball bearings have inner and outer ring raceways that are displaced relative to each other in the direction of the bearing axis. This means that these bearings are designed to accommodate combined loads, i.e. simultaneously acting radial and axial loads.
The axial load carrying capacity of angular contact ball bearings increases as the contact angle increases. The contact angle is defined as the angle between the line joining the points of contact of the ball and the raceways in the radial plane, along which the combined load is transmitted from 1 raceway to another, and a line perpendicular to the bearing axis.

Product Name 

5210 2RS Double Row Angular Contact Ball Bearing




Angular Contact

Applicable Industries

Other, Motors, Air Conditioning

Brand Name


Precision Rating


Seals Type


Number of Row



5210 2RS


50X90X30.2 mm

Bore Size

49.992 – 50 mm


Chrome steel(SUJ2/GCr15)


Auto Air-Conditioner Compressor








100 Pcs


Tapered roller bearings, cylindrical roller bearings, ball bearings, self-aligning roller bearings, base bearings, car hub bearings,

truck hub bearings and other products, We can customize the bearing according to the drawings or samples provided by the customer


Grain machinery, textile machinery, washing machinery, engineering machinery, industrial deceleration

machinery,woodworking machinery, papermaking machinery, mining machinery, coal mining machinery, lifting machinery,

construction machinery, large transportation equipment,

chemical machinery, petroleum machinery, metallurgical industry, large steel mills, cement plants,energy industry, automobiles,

trucks, etc.

Packaging & Shipping


Plastic bag + single box + carton + tray;
Industrial packaging + carton + pallet;
We also can According to your requirements change.


Company Profile

HangZhou CZPT Trading Co., Ltd. was founded in August 2014. It is a bearing manufacturer integrating research, development, and sale of bearings, with a floor area of 18,000 square meters and a plant area of 4,800 square meters. The company has a state-level enterprise technology center and a number of provincial high-tech enterprises with strong technical strength. our company was honored as a competitive brand in the market.

Equipped with modern production equipment and advanced detection instruments, the company especially produces Bearings including 3 varieties of spherical roller bearings, namely cylindrical roller bearings, tapered roller bearings and thrust
spherical roller bearings, Automobile Hub Bearing, to replace imported high-end products.

With the precision of grade P0, grade P6 P5 P4, we bearings are widely used in complete products in metallurgical, mining, petroleum, chemical, coal, cement, papermaking, wind power, heavy machinery, engineering machinery, and port machinery industries. With self-run import & export rights, we sell our products across China and in tens of other countries and areas such
as the United States, Canada, Italy, Russia, Germany, and South Africa.

We would like to serve customers around the world with our reliable products, reasonable prices, and attentive service. The leading products of the company cover 3 main categories which include more than 3,000 types of bearing products.


1.What is your Before-sales Service?
Offer to bear related consultation about technology and application;
Help customers with bearing choice, clearance configuration, products’ life and reliability analysis;
Offer highly cost-effective and complete solution program according to site conditions;
Offer localized program on introduced equipment to save running cost

2.What is your latest delivery time?
If the goods are in stock, usually 5-10 days. Or if the goods are not in stock, it is 15-20 days, which is based
on the quantity.

3.Does your company have quality assurance?
Yes, for 2 years.

4.What is the competitiveness of your company’s products compared to other companies?
High precision, high speed, low noise.

5.What are the advantages of your company’s services compared to other companies?
Answer questions online 24 hours a day, reply in a timely manner, and provide various documents required
by customers for customs clearance or sales. 100% after-sales service.

6.Which payment method does your company support?
30% deposit,balance payment before delivery.

7.How to contact us quickly?
Please send us an inquiry or message and leave your other contact information, such as phone number,
account or account, we will contact you as soon as possible.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 25°
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Radial Bearing
Material: Bearing Steel
US$ 0/Piece
1 Piece(Min.Order)

Request Sample



Customized Request

ball bearing

What are the Materials Typically Used in Manufacturing Ball Bearings and Their Advantages?

Ball bearings are manufactured using a variety of materials, each chosen for its specific properties and advantages in various applications. Here are some commonly used materials in ball bearing manufacturing and their respective benefits:

  • High-Carbon Chrome Steel (AISI 52100):

This is the most common material used for ball bearing manufacturing. It offers excellent hardness, wear resistance, and fatigue strength. High-carbon chrome steel bearings are suitable for a wide range of applications, from industrial machinery to automotive components.

  • Stainless Steel (AISI 440C, AISI 304, AISI 316):

Stainless steel bearings are corrosion-resistant and suitable for applications where moisture, chemicals, or exposure to harsh environments are concerns. AISI 440C offers high hardness and corrosion resistance, while AISI 304 and AISI 316 provide good corrosion resistance and are often used in food and medical industries.

  • Ceramic:

Ceramic bearings use silicon nitride (Si3N4) or zirconia (ZrO2) balls. Ceramic materials offer high stiffness, low density, and excellent resistance to corrosion and heat. Ceramic bearings are commonly used in high-speed and high-temperature applications, such as in aerospace and racing industries.

  • Plastic (Polyamide, PEEK):

Plastic bearings are lightweight and offer good corrosion resistance. Polyamide bearings are commonly used due to their low friction and wear properties. Polyether ether ketone (PEEK) bearings provide high-temperature resistance and are suitable for demanding environments.

  • Bronze:

Bronze bearings are often used in applications where self-lubrication is required. Bronze has good thermal conductivity and wear resistance. Bearings made from bronze are commonly used in machinery requiring frequent starts and stops.

  • Hybrid Bearings:

Hybrid bearings combine steel rings with ceramic balls. These bearings offer a balance between the advantages of both materials, such as improved stiffness and reduced weight. Hybrid bearings are used in applications where high speeds and low friction are essential.

  • Specialty Alloys:

For specific applications, specialty alloys may be used to meet unique requirements. For example, bearings used in extreme temperatures or corrosive environments may be made from materials like titanium or hastelloy.

  • Coated Bearings:

Bearings may also be coated with thin layers of materials like diamond-like carbon (DLC) or other coatings to enhance performance, reduce friction, and improve wear resistance.

The choice of material depends on factors such as application requirements, operating conditions, load, speed, and environmental factors. Selecting the right material is essential for ensuring optimal bearing performance, longevity, and reliability in diverse industries and applications.

ball bearing

What Role do Seals and Shields Play in Protecting Ball Bearings from Dirt and Debris?

Seals and shields are critical components of ball bearings that play a crucial role in protecting them from dirt, debris, moisture, and contaminants in various applications. These protective features help maintain the integrity of the bearing’s internal components and ensure reliable operation. Here’s how seals and shields contribute to bearing protection:

  • Contaminant Exclusion:

Seals and shields create a physical barrier between the external environment and the bearing’s interior. They prevent dust, dirt, water, and other contaminants from entering the bearing and coming into contact with the rolling elements and raceways.

  • Lubrication Retention:

Seals and shields help retain lubrication within the bearing. They prevent the lubricant from escaping and contaminants from entering, ensuring that the bearing remains properly lubricated for smooth operation and reduced friction.

  • Corrosion Prevention:

Seals and shields protect bearing components from exposure to moisture and corrosive substances. By preventing moisture ingress, they help extend the bearing’s lifespan by minimizing the risk of corrosion-related damage.

  • Extended Bearing Life:

Seals and shields contribute to the overall longevity of the bearing by reducing wear and damage caused by contaminants. They help maintain a clean internal environment, which promotes proper rolling contact and minimizes the risk of premature failure.

  • Enhanced Performance in Harsh Environments:

In applications exposed to harsh conditions, such as outdoor machinery or industrial settings, seals and shields are vital. They protect bearings from abrasive particles, chemicals, and extreme temperatures, ensuring reliable performance despite challenging conditions.

  • Noise and Vibration Reduction:

Seals and shields can help reduce noise and vibration generated by the bearing. They provide additional damping and stability, contributing to smoother operation and enhanced user comfort in noise-sensitive applications.

  • Customized Protection:

Manufacturers offer a variety of seal and shield designs to suit different application requirements. Some seals provide higher levels of protection against contamination, while others are designed for high-speed or high-temperature environments.

  • Trade-Offs:

While seals and shields offer significant benefits, they can also introduce some friction due to contact with the bearing’s inner or outer ring. Engineers must balance the level of protection with the desired operating characteristics, considering factors like friction, speed, and environmental conditions.

Overall, seals and shields play a vital role in maintaining the integrity and performance of ball bearings. By effectively preventing contaminants from entering and preserving lubrication, they ensure the smooth and reliable operation of machinery and equipment in a wide range of applications.

ball bearing

Can you Explain the Various Types of Ball Bearings and their Specific Use Cases?

Ball bearings come in various types, each designed to meet specific application requirements. Here’s an overview of the different types of ball bearings and their specific use cases:

  • Deep Groove Ball Bearings:

Deep groove ball bearings are the most common and versatile type. They have a deep raceway that allows them to handle both radial and axial loads. They are used in a wide range of applications, including electric motors, household appliances, automotive components, and industrial machinery.

  • Angular Contact Ball Bearings:

Angular contact ball bearings have a contact angle that enables them to handle both radial and axial loads at specific angles. They are suitable for applications where combined loads or thrust loads need to be supported, such as in machine tool spindles, pumps, and agricultural equipment.

  • Self-Aligning Ball Bearings:

Self-aligning ball bearings have two rows of balls and are designed to accommodate misalignment between the shaft and the housing. They are used in applications where shaft deflection or misalignment is common, such as conveyor systems, textile machinery, and paper mills.

  • Thrust Ball Bearings:

Thrust ball bearings are designed to support axial loads in one direction. They are commonly used in applications where axial loads need to be supported, such as in automotive transmissions, steering systems, and crane hooks.

  • Single-Row vs. Double-Row Bearings:

Single-row ball bearings have a single set of balls and are suitable for moderate load and speed applications. Double-row ball bearings have two sets of balls and offer higher load-carrying capacity. Double-row designs are used in applications such as machine tool spindles and printing presses.

  • Miniature and Instrument Ball Bearings:

Miniature ball bearings are smaller in size and are used in applications with limited space and lower load requirements. They are commonly used in small electric motors, medical devices, and precision instruments.

  • Max-Type and Conrad Bearings:

Max-type ball bearings have a larger number of balls to increase load-carrying capacity. Conrad bearings have fewer balls and are used in applications with moderate loads and speeds.

  • High-Precision Ball Bearings:

High-precision ball bearings are designed for applications where accuracy and precision are critical, such as machine tool spindles, aerospace components, and optical instruments.

  • High-Speed Ball Bearings:

High-speed ball bearings are engineered to minimize friction and accommodate rapid rotation. They are used in applications such as dental handpieces, turbochargers, and centrifuges.

In summary, the various types of ball bearings are tailored to different application requirements, including load type, direction, speed, and environmental conditions. Selecting the appropriate type of ball bearing ensures optimal performance and longevity in specific applications.

China Hot selling High Speed Spindle Bearing 7030c CZPT Rhp CZPT Bearing 7030c High Quality Sealed Angular Contact Thrust Ball Bearing 7030c   manufacturerChina Hot selling High Speed Spindle Bearing 7030c CZPT Rhp CZPT Bearing 7030c High Quality Sealed Angular Contact Thrust Ball Bearing 7030c   manufacturer
editor by CX 2024-01-02

China wholesaler 32321 Tapered Roller Bearing High Quality Machinery Parts for Machine Tool Spindle Instrument Motor Hydraulic Machinery connecting rod bearing

Product Description

Metric Sizes Tapered Roller Bearings
Product Number Bore Dia Outer Dia Inner Width Outer Width Width
(d) (D) (Bi) (Bo) (B)
35712 15 mm 35 mm 11 mm 10 mm 11.75 mm
30302 15 mm 42 mm 13 mm 11 mm 14.25mm
35713 17 mm 40 mm 12 mm 11 mm 13.25mm
30303 17 mm 47 mm 14 mm 12 mm 15.25 mm
32303 17 mm 47 mm 19 mm 16 mm 20.25 mm
35714 20 mm 47 mm 14 mm 12 mm 15.25 mm
35714B 20 mm 47 mm 14 mm 12 mm 15.25 mm
30304 20 mm 52 mm 15 mm 13 mm 16.25mm
30304C 20 mm 52 mm 16 mm 12 mm 16.25 mm
32204 20 mm 47 mm 18 mm 15 mm 19.25 mm
32304 20 mm 52 mm 21 mm 18 mm 22.25mm
35715 25 mm 52 mm 15 mm 13 mm 16.25 mm
30305 25 mm 62 mm 17 mm 15 mm 18.25 mm
31305 25 mm 62 mm 17 mm 13 mm 18.25 mm
32005 25 mm 47 mm 15 mm 11.50 mm 15 mm
32205 25 mm 52 mm 18 mm 16 mm 19.25 mm
32305 25 mm 62 mm 24 mm 20 mm 25.25 mm
33205 25 mm 52 mm 22 mm 18 mm 22 mm
32026 26 mm 47 mm 15 mm 11.50 mm 47 mm
32571 28 mm 52 mm 16 mm 12 mm 16. mm
33228 28 mm 58 mm 24 mm 19 mm 24 mm
35716 30 mm 62 mm 16 mm 14 mm 17.25 mm
30306 30 mm 72 mm 19 mm 16 mm 20.75 mm
31306 30 mm 72 mm 19 mm 14 mm 20.75 mm
32006 30 mm 55 mm 17 mm 13 mm 17 mm
32206 30 mm 62 mm 20 mm 17 mm 21.25 mm
32306 30 mm 72 mm 27 mm 23 mm 28.75 mm
33206 30 mm 62 mm 25 mm 19.5 mm 25 mm
32032 32 mm 58 mm 17 mm 13 mm 17 mm
32032A 32 mm 58 mm 17 mm 13 mm 17 mm
32332B 32 mm 75 mm 28 mm 23 mm 29.75 mm
33232 32 mm 65 mm 26 mm 20.5 mm 26 mm
35717 35 mm 72 mm 17 mm 15 mm 18.25 mm
30307 35 mm 80 mm 21 mm 18 mm 22.75 mm
31307 35 mm 80 mm 21 mm 15 mm 22.75 mm
32007 35 mm 62 mm 18 mm 14 mm 18 mm
32207 35 mm 72 mm 23 mm 19 mm 24.25 mm
32307 35 mm 80 mm 31 mm 25 mm 32.75 mm
33207 35 mm 72 mm 28 mm 22 mm 28 mm
35718 40 mm 80 mm 18 mm 16 mm 19.75 mm
30308 40 mm 90 mm 23 mm 20 mm 25.25 mm
31308 40 mm 90 mm 23 mm 17 mm 25.25 mm
32008 40 mm 68 mm 19 mm 14.5 mm 19 mm
32208 40 mm 80 mm 23 mm 19 mm 24.75 mm
32308 40 mm 90 mm 33 mm 27 mm 35.25 mm
33108 40 mm 75 mm 26 mm 20.5 mm 26 mm
33208 40 mm 80 mm 32 mm 25 mm 32 mm
35719 45 mm 85 mm 19 mm 16 mm 20.75 mm
30309 45 mm 100 mm 25 mm 22 mm 27.25 mm
31309 45 mm 100 mm 25 mm 18 mm 27.25 mm
32009 45 mm 75 mm 20 mm 15.5 mm 20 mm
32209 45 mm 85 mm 23 mm 19 mm 24.75 mm
32309 45 mm 100 mm 36 mm 30 mm 38.25 mm
33209 45 mm 85 mm 32 mm 24.5 mm 32 mm
27709 45 mm 100 mm 29 mm 20.50 mm 31.75 mm
33109 45 mm 80 mm 26 mm 20.5 mm 26 mm
27709K 45 mm 100 mm 29 mm 20.50 mm 32 mm
35710 50 mm 90 mm 20 mm 17 mm 21.75 mm
3571 50 mm 110 mm 27 mm 23 mm 29.25 mm
31310 50 mm 110 mm 27 mm 19 mm 29.25 mm
32571 50 mm 80 mm 20 mm 15.5 mm 20 mm
32210 50 mm 90 mm 23 mm 19 mm 24.75 mm
32310 50 mm 110 mm 40 mm 33 mm 42.25 mm
33110 50 mm 85 mm 26 mm 20 mm 26 mm
33210 50 mm 90 mm 32 mm 24.5 mm 32 mm
30111 55 mm 100 mm 21 mm 18 mm 22.75 mm
3571 55 mm 120 mm 29 mm 25 mm 31.5 mm
31311 55 mm 120 mm 29 mm 21 mm 31.5 mm
32011 55 mm 90 mm 23 mm 17.5 mm 23 mm
32211 55 mm 100 mm 25 mm 21 mm 26.75 mm
32311 55 mm 120 mm 43 mm 35 mm 45.5 mm
32311A 55 mm 120 mm 43 mm 35 mm 45.5 mm
33111 55 mm 95 mm 30 mm 23 mm 30 mm
33211 55 mm 100 mm 35 mm 27 mm 35 mm
35712 60 mm 110 mm 22 mm 19 mm 23.75 mm
3571 60 mm 130 mm 31 mm 26 mm 33.5 mm
31312 60 mm 130 mm 31 mm 22 mm 33.5 mm
32012 60 mm 95 mm 23 mm 17.5 mm 23 mm
32212 60 mm 110 mm 28 mm 24 mm 29.75 mm
32312 60 mm 130 mm 46 mm 37 mm 48.5 mm
32312B 60 mm 130 mm 46 mm 37 mm 48.5 mm
33112 60 mm 100 mm 30 mm 23 mm 30 mm
33212 60 mm 110 mm 38 mm 29 mm 38 mm
35713 65 mm 120 mm 23 mm 20 mm 24.75 mm
3571 65 mm 140 mm 33 mm 28 mm 36 mm
30613E 65 mm 110 mm 30 mm 24 mm 30.5 mm
31313 65 mm 140 mm 33 mm 23 mm 36 mm
32013 65 mm 100 mm 23 mm 17.5 mm 23 mm
32213 65 mm 120 mm 31 mm 27 mm 32.75 mm
32313 65 mm 140 mm 48 mm 39 mm 51 mm
32313B 65 mm 140 mm 48 mm 39 mm 51 mm
33113 65 mm 110 mm 34 mm 26.50 mm 34 mm
33213 65 mm 120 mm 41 mm 32 mm 41 mm
35714 70 mm 125 mm 24 mm 21 mm 26.25 mm
3571 70 mm 150 mm 35 mm 30 mm 38 mm
31314 70 mm 150 mm 35 mm 25 mm 38 mm
32014 70 mm 110 mm 25 mm 19 mm 25 mm
32214 70 mm 125 mm 31 mm 27 mm 33.25 mm
32314 70 mm 150 mm 51 mm 42 mm 54 mm
32314B 70 mm 150 mm 51 mm 42 mm 54 mm
33114 70 mm 120 mn 37 mm 29 mm 37 mm
33214 70 mm 125 mm 41 mm 32 mm 41 mm
35715 75 mm 130 mn 25 mm 22 mm 27.25 mm
3571 75 mm 160 mm 37 mm 31 mm 40 mm
30615 75 mm 135 mm 45 mm 36.5 mm 44.5 mm
31315 75 mm 160 mm 37 mm 26 mm 40 mm
32015 75 mm 115 mm 25 mm 19 mm 25 mm
32215 75 mm 130 mm 31 mm 27 mm 33.25 mm
32315 75 mm 160 mm 55 mm 45 mm 58 mm
32315B 75 mm 160 mm 55 mm 45 mm 58 mm
33115 75 mm 125 mm 37 mm 29 mm 37 mm
33215 75 mm 130 mm 41 mm 31 mm 41 mm
35716 80 mm 140 mm 26 mm 22 mm 28.25 mm
3 0571 80 mm 170 mm 39 mm 33 mm 42.5 mm
30616 80 mm 140 mm 45 mm 36.5 mm 45 mm
31316 80 mm 170 mm 39 mm 27 mm 42.5 mm
32016 80 mm 125 mm 29 mm 22 mm 29 mm
32216 80 mm 140 mm 33 mm 28 mm 35.25 mm
32316 80 mm 170 mm 58 mm 48 mm 61.5 mm
33116 80 mm 130 mm 37 mm 29 mm 37 mm
33216 80 mm 140 mm 46 mm 35 mm 46 mm
35717 85 mm 150 mm 28 mm 24 mm 30.5 mm
3 0571 85 mm 180 mm 41 mm 34 mm 44.5 mm
31317 85 mm 180 mm 41 mm 28 mm 44.5 mm
32017 85 mm 130 mm 29 mm 22 mm 29 mm
32217 85 mm 150 mm 36 mm 30 mm 38.5 mm
32317 85 mm 180 mm 60 mm 49 mm 63.5 mm
33117 85 mm 140 mm 41 mm 32 mm 41 mm
33217 85 mm 150 mm 49 mm 37 mm 49 mm
35718 90 mm 160 mm 30 mm 26 mm 32.5 mm
3 0571 90 mm 190 mm 43 mm 36 mm 46.5 mm
31318 90 mm 190 mm 43 mm 30 mm 46.5 mm
32018 90 mm 140 mm 32 mm 24 mm 32 mm
32218 90 mm 160 mm 40 mm 34 mm 42.5 mm
32318 90 mm 190 mm 64 mm 53 mm 67.5 mm
33118 90 mm 150 mm 45 mm 35 mm 45 mm
35719 95 mm 170 mm 32 mm 27 mm 34.5 mm
3571 95 mm 200 mm 45 mm 38 mm 49.5 mm
31319 95 mm 200 mm 45 mm 32 mm 49.50 mm
32019 95 mm 145 mm 32 mm 24 mm 32 mm
32219 95 mm 170 mm 43 mm 37 mm 45.5 mm
32319 95 mm 200 mm 67 mm 55 mm 71.5 mm
33019 95 mm 145 mm 39 mm 32.5 mm 39 mm
35710 100 mm 180 mm 34 mm 29 mm 37 mm
30320 100 mm 215 mm 47 mm 39 mm 51.5 mm
31320 100 mm 215 mm 51 mm 35 mm 56.5 mm
32571 100 mm 150 mm 32 mm 24 mm 32 mm
32220 100 mm 180 mm 46 mm 39 mm 49 mm
32320 100 mm 215 mm 73 mm 60 mm 77.5 mm
33220 100 mm 180 mm 63 mm 48 mm 63 mm
35711 105 mm 190 mm 36 mm 30 mm 39 mm
30321 105 mm 225 mm 49 mm 41.00 mm 53.50 mm
31321 105 mm 225 mm 53 mm 36 mm 58 mm
32571 105 mm 160 mm 35 mm 26 mm 35 mm
32221 105 mm 190 mm 50 mm 43 mm 53 mm
32321 105 mm 225 mm 77 mm 63 mm 81.5 mm
35712 110 mm 200 mm 38 mm 32 mm 41 mm
30322 110 mm 240 mm 50 mm 42 mm 54.5 mm
31322 110 mm 240 mm 57 mm 38 mm 63 mm
32571 110 mm 170 mm 38 mm 29 mm 38 mm
32222 110 mm 200 mm 53 mm 46 mm 56 mm
32322 110 mm 240 mm 80 mm 65 mm 84.5 mm
33571 110 mm 170 mm 47 mm 37 mm 47 mm
33122 110 mm 180 mm 56 mm 43 mm 56 mm
35714 120 mm 215 mm 40 mm 34 mm 43.5 mm
30324 120 mm 260 mm 55 mm 46 mm 59.5 mm
31324 120 mm 260 mm 62 mm 42 mm 68 mm
32571 120 mm 180 mm 38 mm 29 mm 38 mm
32224 120 mm 215 mm 58 mm 50 mm 61.50 mm
32324 120 mm 260 mm 86 mm 69 mm 90.5 mm
35716 130 mm 230 mm 40 mm 34 mm 43.75 mm
30326 130 mm 280 mm 58 mm 49 mm 63.75 mm
31326 130 mm 280 mm 66 mm 44 mm 72 mm
32026 130 mm 200 mm 45 mm 34 mm 45 mm
32226 130 mm 230 mm 64 mm 54 mm 67.75 mm
35718 140 mm 250 mm 42 mm 36 mm 45.75 mm
30328 140 mm 300 mm 62 mm 53 mm 67.75 mm
31328 140 mm 300 mm 70 mm 47 mm 77 mm
32571 140 mm 210 mm 45 mm 34 mm 45 mm
32228 140 mm 250 mm 68 mm 58 mm 71.75 mm
35710 150 mm 270 mm 45 mm 38 mm 49 mm
30330 150 mm 320 mm 65 mm 55 mm 72 mm
31330 150 mm 320 mm 75 mm 50 mm 82 mm
32030 150 mm 225 mm 48 mm 36 mm 48 mm
32230 150 mm 270 mm 73 mm 60 mm 77 mm
35712 160 mm 290 mm 48 mm 40 mm 52 mm
30332 160 mm 340 mm 68 mm 58 mm 75 mm
32032 160 mm 240 mm 51 mm 38 mm 51 mm
32232 160 mm 290 mm 80 mm 67 mm 84 mm
35714 170 mm 310 mm 52 mm 43 mm 57 mm
30334 170 mm 360 mm 72 mm 62 mm 80 mm
32034 170 mm 260 mm 57 mm 43 mm 57 mm
32234 170 mm 310 mm 86 mm 71 mm 91 mm
32334 170 mm 360 mm 120 mm 100 mm 128 mm
35716 180 mm 320 mm 52 mm 43 mm 57 mm
32036 180 mm 280 mm 64 mm 48 mm 64 mm
32236 180 mm 320 mm 86 mm 71 mm 91 mm
35718 190 mm 340 mm 55 mm 46 mm 60 mm
32038 190 mm 290 mm 64 mm 48 mm 64 mm
32238 190 mm 340 mm 92 mm 75 mm 97 mm
35710 200 mm 360 mm 58 mm 48 mm 64 mm
32040 200 mm 310 mm 70 mm 53 mm 70 mm
32240 200 mm 360 mm 98 mm 82 mm 104 mm
32044 220 mm 340 mm 76 mm 57 mm 76 mm
32244 220 mm 400 mm 108 mm 90 mm 115 mm
32048 240 mm 360 mm 76 mm 57 mm 76 mm
32948 240 mm 320 mm 51 mm 39 mm 51 mm

Packing & Delivery

1.industrial packing+industrial cartons+pallets

2.single brand box+brand cartons+pallets

3.follow customer’s requests

A.Plastic Tubes or Single Boxes ( Usually 10pcs in 1 plastic tube for steel bearings);

B.Cartons ( No more than 30kg for 1 carton );

C. Pallet ( Usually more than 400kg totally will use pallet )


D. Delivery time :7-35 days ( by sea or by air )

 Generally,We will choose the most suitable packing method for products. If you have any special requirements for packing, please contact us in advance.

Rolling Body: Roller Bearings
The Number of Rows: Single
Outer Dimension: Large (200-430mm)
Material: Bearing Steel
Spherical: Non-Aligning Bearings
Load Direction: Axial Bearing
US$ 0/Piece
1 Piece(Min.Order)

Request Sample



Customized Request


The benefits of rubber bushings and how they work

If you have experienced increased vibration while driving, you know the importance of replacing the control arm bushings. The resulting metal-to-metal contact can cause annoying driving problems and be a threat to your safety. Over time, the control arm bushings begin to wear out, a process that can be exacerbated by harsh driving conditions and environmental factors. Additionally, larger tires that are more susceptible to bushing wear are also prone to increased vibration transfer, especially for vehicles with shorter sidewalls. Additionally, these plus-sized tires, which are designed to fit on larger rims, have a higher risk of transmitting vibrations through the bushings.


Rubber bushings are rubber tubes that are glued into the inner or outer curve of a cylindrical metal part. The rubber is made of polyurethane and is usually prestressed to avoid breaking during installation. In some cases, the material is also elastic, so it can slide. These properties make rubber bushings an integral part of a vehicle’s suspension system. Here are some benefits of rubber bushings and how they work.
Rubber bushings are used to isolate and reduce vibration caused by the movement of the two pieces of equipment. They are usually placed between two pieces of machinery, such as gears or balls. By preventing vibrations, rubber bushings improve machine function and service life. In addition to improving the overall performance of the machine, the rubber bushing reduces noise and protects the operator from injury. The rubber on the shock absorber also acts as a vibration isolator. It suppresses the energy produced when the two parts of the machine interact. They allow a small amount of movement but minimize vibration.
Both rubber and polyurethane bushings have their advantages and disadvantages. The former is the cheapest, but not as durable as polyurethane. Compared to polyurethane, rubber bushings are a better choice for daily commutes, especially long commutes. Polyurethane bushings provide better steering control and road feel than rubber, but can be more expensive than the former. So how do you choose between polyurethane and rubber bushings?


Unlike rubber, polyurethane bushings resist high stress environments and normal cycling. This makes them an excellent choice for performance builds. However, there are some disadvantages to using polyurethane bushings. Read on to learn about the advantages and disadvantages of polyurethane bushings in suspension applications. Also, see if a polyurethane bushing is suitable for your vehicle.
Choosing the right bushing for your needs depends entirely on your budget and application. Softer bushings have the lowest performance but may have the lowest NVH. Polyurethane bushings, on the other hand, may be more articulated, but less articulated. Depending on your needs, you can choose a combination of features and tradeoffs. While these are good options for everyday use, for racing and hardcore handling applications, a softer option may be a better choice.
The initial hardness of the polyurethane bushing is higher than that of the rubber bushing. The difference between the two materials is determined by durometer testing. Polyurethane has a higher hardness than rubber because it does not react to load in the same way. The harder the rubber, the less elastic, and the higher the tear. This makes it an excellent choice for bushings in a variety of applications.


Solid bushings replace the standard bushings on the subframe, eliminating axle clutter. New bushings raise the subframe by 0.59″ (15mm), correcting the roll center. Plus, they don’t create cabin noise. So you can install these bushings even when your vehicle is lowered. But you should consider some facts when installing solid casing. Read on to learn more about these casings.
The stiffest bushing material currently available is solid aluminum. This material hardly absorbs vibrations, but it is not recommended for everyday use. Its stiffness makes it ideal for rail vehicles. The aluminum housing is prone to wear and tear and may not be suitable for street use. However, the solid aluminum bushings provide the stiffest feel and chassis feedback. However, if you want the best performance in everyday driving, you should choose a polyurethane bushing. They have lower friction properties and eliminate binding.
Sturdy subframe bushings will provide more driver feedback. Additionally, it will strengthen the rear body, eliminating any movement caused by the subframe. You can see this structural integration on the M3 and M4 models. The benefits of solid subframe bushings are numerous. They will improve rear-end handling without compromising drivability. So if you plan to install a solid subframe bushing, be sure to choose a solid bushing.

Capacitor classification

In the circuit, there is a high electric field on both sides of the capacitor grading bushing. This is due to their capacitor cores. The dielectric properties of the primary insulating layer have a great influence on the electric field distribution within the bushing. This article discusses the advantages and disadvantages of capacitor grade bushings. This article discusses the advantages and disadvantages of grading bushings for capacitors in DC power systems.
One disadvantage of capacitor grading bushings is that they are not suitable for higher voltages. Capacitor grading bushings are prone to serious heating problems. This may reduce their long-term reliability. The main disadvantage of capacitor grading bushings is that they increase the radial thermal gradient of the main insulation. This can lead to dielectric breakdown.
Capacitor grading bushing adopts cylindrical structure, which can suppress the influence of temperature on electric field distribution. This reduces the coefficient of inhomogeneity of the electric field in the confinement layer. Capacitor grading bushings have a uniform electric field distribution across their primary insulation. Capacitive graded bushings are also more reliable than nonlinear bushings.
Electric field variation is the most important cause of failure. The electrode extension layer can be patterned to control the electric field to avoid flashover or partial discharge of the primary insulating material. This design can be incorporated into capacitor grading bushings to provide better electric fields in high voltage applications. This type of bushing is suitable for a wide range of applications. This article discusses the advantages and disadvantages of capacitor grade bushings.


When choosing between plastic and metal sleeves, it is important to choose a product that can handle the required load. Plastic bushings tend to deteriorate and often crack under heavy loads, reducing their mechanical strength and service life. Metal bushings, on the other hand, conduct heat more efficiently, preventing any damage to the mating surfaces. Plastic bushings can also be made with lubricating fillers added to a resin matrix.
Plastic bushings have many advantages over metal bushings, including being cheap and versatile. Plastic bushings are now used in many industries because they are inexpensive and quick to install. These plastic products are also self-lubricating and require less maintenance than metals. They are often used in applications where maintenance costs are high or parts are difficult to access. Also, if they are prone to wear and tear, they are easy to replace.
Metal bushings can be made of PTFE, plastic or bronze and are self-lubricating. Graphite plugs are also available for some metal bushings. Their high load capacity and excellent fatigue resistance make them a popular choice for automotive applications. The bi-metallic sintered bronze layer in these products provides excellent load-carrying capacity and good friction properties. The steel backing also helps reduce processing time and avoids the need for additional pre-lubrication.


A plastic bushing is a small ball of material that is screwed onto a nut or locknut on a mechanical assembly. Plastic bushings are very durable and have a low coefficient of friction, making them a better choice for durable parts. Since they do not require lubrication, they last longer and cost less than their metal counterparts. Unlike metal bushings, plastic bushings also don’t scratch or attract dirt.
One type of acetal sleeve is called SF-2. It is made of metal alloy, cold rolled steel and bronze spherical powder. A small amount of surface plastic penetrated into the voids of the copper spherical powder. Plastic bushings are available in a variety of colors, depending on the intended application. SF-2 is available in black or grey RAL 7040. Its d1 diameter is sufficient for most applications.
Another acetal sleeve is UHMW-PE. This material is used in the production of bearings and in low load applications. This material can withstand pressures from 500 to 800 PSI and is widely available. It is also self-lubricating and readily available. Due to its high resistance to temperature and chemical agents, it is an excellent choice for low-load industrial applications. If you’re in the market for an alternative to nylon, consider acetal.
Positional tolerances in many automotive components can cause misalignment. Misaligned plastic bushings can negatively impact the driver’s experience. For example, the cross tubes used to mount the seat to the frame are made by a stamping process. The result is a misalignment that can increase torque. Also, the plastic bushing is pushed to one side of the shaft. The increased pressure results in higher friction, which ultimately results in a poor driving experience.
China wholesaler 32321 Tapered Roller Bearing High Quality Machinery Parts for Machine Tool Spindle Instrument Motor Hydraulic Machinery   connecting rod bearingChina wholesaler 32321 Tapered Roller Bearing High Quality Machinery Parts for Machine Tool Spindle Instrument Motor Hydraulic Machinery   connecting rod bearing
editor by CX 2023-06-09

China high quality Safety Dental High Speed Handpiece Bearing Dental Spindle bearing driver kit

Product Description

Business type

Custom manufacturer

Country / Region

ZheJiang , China

Main Products

Dental chair, Dental chair unit, Dental scaler, Dental equipment, Dental handpiece


Private Owner

Total employees

101 – 2 R.P.M



German / Japnaese ceramic bearing


Dental Handpiece


Anti-retraction cartridge

Water Pressure



Packing Size




Packaging & delivery

Selling Units:
Single item
Single package size: 
20X10X5 cm
Single gross weight:
2.000 kg
Package Type:
1pc/box ,we can packing as your request

Quantity(pieces) 1 – 50 >50
Lead time (days) 15 To be negotiated


Condition: New
Certification: ISO9001, ISO
Material: Titanium
Light Way: With LED Light
Water Way: Inner Channel
Usage Times: Non-Disposable
US$ 85/Piece
1 Piece(Min.Order)

Request Sample



Customized Request


Materials Used in Bearings

If you’re not familiar with the types of bearings, you may be interested in knowing more about the materials used to manufacture them. Here’s a look at what each type of bearing is made of, how it’s used, and how much they cost. To find the right bearing for your application, it’s important to choose a quality lubricant. The materials used in bearings are determined by their type and applications. Choosing the right lubricant will extend its life, and protect your machine’s parts from damage and premature wear.

Materials used in bearings

Bearings are made from a variety of materials. Stainless steel is a common material used for the components of bearings. It has a higher content of chromium and nickel. When exposed to oxygen, chromium reacts with it to form chromium oxide, which provides a passive film. For higher temperatures, teflon and Viton are also used. These materials offer excellent corrosion resistance and are often preferred by manufacturers for their unique properties.
Stainless steel is another material used in bearings. AISI 440C is a high-carbon stainless steel commonly used in rolling-contact bearings. It is widely used in corrosive environments, especially in applications where corrosion resistance is more important than load capacity. It can also be heat-treated and hardened to 60 HRC, but has lower fatigue life than SAE 52100. Stainless steel bearings may carry a 20-40% price premium, but their superior performance is worth the extra money.
Graphite and molybdenum disulfide are two of the most common materials used in bearings. While graphite is a popular material in bearings, it has very poor corrosion resistance and is unsuitable for applications where oil or grease is required. Graphite-based composite materials are another option. They combine the benefits of both graphite and ceramic materials. A variety of proprietary materials have been developed for high-temperature use, such as graphite and MoS2.
Wood bearings have been around for centuries. The oldest ones used wood and Lignum Vitae. These materials were lightweight, but they were incredibly strong and durable. Wood bearings were also lubricated with animal fats. During the 1700s, iron bearings were a popular choice. In 1839, Isaac Babbitt invented an alloy containing hard metal crystals suspended in a softer metal. It is considered a metal matrix composite.

Applications of bearings

Bearings are used in many different industries and systems to help facilitate rotation. The metal surfaces in the bearings support the weight of the load, which drives the rotation of the unit. Not all loads apply the same amount of force to bearings, however. Thrust and radial loads act in distinctly different ways. To better understand the different uses of bearings, let’s examine the various types of bearings. These versatile devices are essential for many industries, from automobiles to ships and from construction to industrial processes.
Cylindrical roller bearings are designed to support heavy loads. Their cylindrical rolling element distributes the load over a larger area. They are not, however, suited to handling thrust loads. Needle bearings, on the other hand, use small diameter cylinders and can fit into tighter spaces. The advantages of these types of bearings are numerous, and many leading producers are now leveraging the Industrial Internet of Things (IIoT) to develop connected smart bearings.
As a power generation industry, bearings play an essential role. From turbines to compressors, from generators to pumps, bearings are essential components of equipment. In addition to bearings, these components help move the equipment, so they can work properly. Typically, these components use ball bearings, although some roller bearings are used as well. In addition to being efficient and durable, these types of bearings also tend to be built to meet stringent internal clearance requirements and cage design requirements.
In addition to bearings for linear motion, bearings can also bear the weight of a rotary part. Depending on the application, they can be designed to minimize friction between moving parts. By constraining relative motion, bearings are used to reduce friction within a given application. The best-designed bearings minimize friction in a given application. If you’re in the market for a new bearing, NRB Industrial Bearings Limited is an excellent source to begin your search.

Types of bearings

The type of bearings you choose will have a significant impact on the performance of your machinery. Using the right bearings can increase efficiency, accuracy, and service intervals, and even reduce the cost of purchasing and operating machinery. There are several different types of bearings to choose from, including ball bearings and flexure bearings. Some types use a fluid to lubricate their surfaces, while others do not.
Plain bearings are the most common type of bearing, and are used for a variety of applications. Their cylindrical design allows for a relatively smooth movement. Often made of copper or other copper alloy, they have low coefficients of friction and are commonly used in the construction industry. Some types of plain bearings are also available with a gudgeon pin, which connects a piston to a connecting rod in a diesel engine.
Magnetic bearings are the newest type of bearing. They use permanent magnets to create a magnetic field around the shaft without requiring any power. These are difficult to design, and are still in the early stages of development. Electromagnets, on the other hand, require no power but can perform very high-precision positioning. They can be extremely durable and have a long service life. They are also lightweight and easy to repair.
Another type of bearing is needle roller. These are made of thin, long, and slender cylinders that are used in a variety of applications. Their slender size is ideal for a space-constrained application, and their small profile allows them to fit in tight places. These types of bearings are often used in automotive applications, bar stools, and camera panning devices. They have several advantages over ball bearings, including the ability to handle heavy axial loads.

Cost of bearings

A wide range of factors affect the cost of aerospace bearings, including the bearing material and its volatility. Manufacturers typically use high-grade steel for aircraft bearings, which are highly affected by fluctuations in the steel price. Government policies also play a part in the variation in trade price. The implementation of COVID-19 has changed the market dynamics, creating an uncertain outlook for supply and demand of aerospace bearings. New trade norms and transportation restrictions are expected to hamper the growth of this industry.
Demand for aerospace bearings is largely driven by aircraft manufacturers. In North America, aircraft manufacturers must meet extremely high standards of weight, performance, and quality. They also must be lightweight and cost-effective. This has resulted in a rising cost of aerospace bearings. The market for aerospace bearings is expected to grow at the highest CAGR over the next few years, driven by increasing investments in defense and aerospace infrastructure across Asia-Pacific.
Hub assemblies are also expensive. A wheel hub will cost between $400 and $500 for one set of bearings. In addition to this, the speed sensor will be included. The average cost of wheel bearings is between $400 and $500 for one side, including labor. But this price range is much lower if the bearing is a replacement of an entire wheel assembly. It is still worth noting that wheel hub bearings can be purchased separately for a lower price.
Replacement of one or two wheel bearings will depend on the model and year of the vehicle. For a small car, one rear wheel bearing can cost between $190 and $225, whereas two front wheel hubs can cost upwards of $1,000. Labor and parts prices will vary by location, and labor costs may also be covered under some warranty plans. If you decide to have it done yourself, be sure to ask multiple shops for estimates.

Inspection of bearings

To maintain bearing performance and prevent accidents, periodic inspections are essential. In addition to ensuring reliability, these inspections improve productivity and efficiency. Regular maintenance includes disassembly inspection, replenishment of lubricant and monitoring operation status. Here are some common ways to perform the necessary inspections. Keep reading to learn how to maintain bearings. After disassembly, you must clean the components thoroughly. Ensure that the bearings are free of burrs, debris, and corrosion.
Ultrasound technology is an excellent tool for monitoring slow-speed bearings. Most ultrasound instruments offer wide-ranging sensitivity and frequency tuning. Ultrasound can also be used to monitor bearing sound. Ultra-slow bearings are usually large and greased with high-viscosity lubricant. Crackling sounds indicate deformity. You can also listen for abnormal noise by plugging a vibration analyzer into the machine. Once the machine shows abnormal noise, schedule additional inspections.
Ultrasonic inspection involves using an ultrasound transducer to measure the amplitude of sound from a bearing. It is effective in early warnings of bearing failure and prevents over-lubrication. Ultrasound inspection of bearings is a cost-effective solution for early diagnosis of bearing problems. In addition to being a reliable tool, ultrasonic testing is digital and easy to implement. The following are some of the advantages of ultrasonic bearing inspection.
Dynamic quality evaluation involves the use of a special fixture for measuring bearing deformations under low shaft speed and light radial load. The size of the fixture influences the value of the deformations. A fixture should be sized between the diameter of the sensor and the roller to ensure maximum precision. The outer deformation signal is more sensitive with a larger sensor diameter. A vibration-acceleration sensor is used for the contrast test.

China high quality Safety Dental High Speed Handpiece Bearing Dental Spindle   bearing driver kitChina high quality Safety Dental High Speed Handpiece Bearing Dental Spindle   bearing driver kit
editor by CX 2023-05-12