Tag Archives: ball bearing for turbocharger

China Hot selling for Turbocharger Bearing 636 Zz 636 2RS Low Noise Chrome Steel Deep Groove Ball Bearing 636 6X22X7mm bearing driver

Product Description

About Deep Groove Ball Cearing

6000 Series – Extra Light Ball Bearings – Ideal for limited space applications
602  603  604  605  606  607  608  609  623  624  625  626  627  628  629 6000  6001  6002  6003  6004  6005  6006  6007  6008  6009  6571  6011  6012  6013  6014  6015  6016  6017  6018  
6019  6571  6571  6571  6571  6026  6571   6030  6032  6034  6036  6038  6040  6044  6048  6052  6056  6060  6064  
6068   6072  6080  6088  6092 bearing
6200 Series – Light Series Ball Bearings – Balanced between space and load capacity
6201  6202  6203  6204  6205  6206  6207  6208  6209  6210  6211  6212  6213   6214  6215  6216  6217  6218  6219  
6220  6221  6222  6224  6226  6228  6230   6232  6234  6236  6238  6240  6244  6248  6252  6256  6260  6264  6268  
6272  6276  6280  Z/ZZ/2Z/2RS/M/N/CM C3 bearing
6300 Series – Medium Series Ball Bearings – Ideal for heavier load capacity applications
6301  6302  6303  6304  6305  6306  6307  6308  6309  6310  6311  6312  6313  6314  6315  6316  6317  6318  
6319  6320  6321  6322  6324  6326  6328  6330  6332  6334  6336  6338  6340  6344  6348  6352  6356  6360  6364  
6368  bearing
61800  61801  61802  61803  61804  61805  61806  61807  61808  61809  61810   61811  61812  61813  61814  61815  
61816  61817  61818  61819  61820  61821  61822  61824  61826  61828  61829  61830  61832  61834  61836  61838  
61840  61844  61848  61852  61856  61860M  61864M  61868M  61872M  61876M  61880M  61884M  61888M  
61892M  61896M bearing
61900  61901  61902  61903  61904  61905  61906  61907  61908  61909  61910  61911  61912  61913  61914  61915  
61916  61917  61918  61919  61920  61921  61922  61924  61926  61928mA  61230mA  61932mA  61934mA  61936mA  
61938mA  61940mA  61944mA  61948mA  61952mA  61956mA  61956mA  61960mA  61964mA  61968mA  61972mA  
61976mA  61980mA bearing

Basic Info

 

Model d (mm) D (mm) H (mm) W (kg)
6008 40 68 15 0.185
6009 45 75 16 0.231
6571 50 80 16 0.25
6011 55 90 18 0.362
6012 60 95 18 0.385
6013 65 100 18 0.408
6014 70 110 20 0.62
6015 75 115 20 0.63
6016 80 125 22 0.86
6017 85 130 22 0.94
6018 90 140 24 1.38
6019 95 145 24 1.5
6571 100 150 24 1.63
6571 110 170 28 2.35
6206 30 62 16 0.21
6207 35 72 17 0.288
6208 40 80 18 0.368
6209 45 85 19 0.416
6210 50 90 20 0.463
6211 55 100 21 0.603
6212 60 110 22 0.789
6213 65 120 23 0.99
6214 70 125 24 1.084
6215 75 130 25 1.171
6216 80 140 26 1.448
6217 85 150 28 1.803
6218 90 160 30 2.71
6219 95 170 32 2.62
6220 100 180 34 3.19
6305 25 62 17 0.232
6306 30 72 19 0.346
6307 35 80 21 0.457
6308 40 90 23 0.639
6309 45 100 25 0.837
6310 50 110 27 1.082
6311 55 120 29 1.367
6312 60 130 31 1.71
6313 65 40 33 2.1
6314 70 150 35 2.55
6315 75 160 37 3.05
6316 80 170 39 3.61
6317 85 180 41 4.284
6318 90 190 43 4.97
6319 95 200 45 5.74
6320 100 215 47 7.09
6403 17 62 17 0.27
6404 20 72 19 0.4
6405 25 80 21 0.53
6406 30 90 23 0.735
6407 35 100 25 0.952
6408 40 110 27 1.221
6409 45 120 29 1.52
6410 50 130 31 1.855
6411 55 140 33 2.316
6412 60 150 35 2.811
6413 65 160 37 3.342
6414 70 180 42 4.896
6415 75 190 45 5.739
6416 80 200 48 6.752
6417 85 210 52 7.933
6418 90 225 54 9.56

*Rolling and pressing are used in industrial equipment in concentrators, mining, and smelters.
*High-spec bearings for Electromechanical equipment used in power stations, gas turbines, and electric motor installations. 
*Packaging and printing, packaging equipment, food machinery and equipment, independent bearings and outer spherical bearings.
*Plastics, chemical fiber machinery, plastic film stretching, independent bearings and high-temperature bearings.
*Precision bearings for small toys, clocks, electronic equipment, audio-visual products, mechanical equipment.

Product Application

Company Profile

    ZheJiang Haina Bearing Co., Ltd. is an integrated company of industry and trade. Since its establishment, it has been committed to the research and development, production, and sales of high-end 7 types of tapered roller bearings, British non-standard bearings, deep groove ball bearings, and outer spherical bearings. We can customize and adjust various types of bearings according to customer needs. The products are widely applicablein fields such as automobiles, mines, chemicals, metallurgy, reducers, engineering machinery, agricultural machinery, and electric motors.

    Our company has advanced testing equipment, forming a production model of product serialization and mass production. We have a group of experienced and skilled management personnel, who have introduced advanced production equipment and measuringand testing equipment. From the purchase of bearing raw materials to the delivery of finished products, we strictly control the entire process, ensuring the quality of the products.The products have the characteristics of precision, low noise, high load-bearing capacity and long service life.

FAQ
1.Are you trading company or manufacturer?
We are factory.
2.How long is your delivery time?
Generally it is 5-10 days if the goods arein stock.or it is 10-20 days if the goods are not in stock, it is according to quantity
3.Do you provide samples? is it free or extra?
Yes.we could offer the sample for free charge but do not pay the cost of freight.
Pls don’t hesitate to let us know if you have any problem
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Model No.: 6013 6014 6015 6016 6017
OEM: Acceptable
Quality: P0 P2 P4 P5 P6
Number of Row: Single Rows
Single Row ID Size Range: 65-85mm
Single Row Od Size Range: 100-130mm
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

ball bearing

How does Preload Affect the Performance and Efficiency of Ball Bearings?

Preload is a crucial factor in ball bearing design that significantly impacts the performance, efficiency, and overall behavior of the bearings in various applications. Preload refers to the intentional axial force applied to the bearing’s rolling elements before it is mounted. This force eliminates internal clearance and creates contact between the rolling elements and the raceways. Here’s how preload affects ball bearing performance:

  • Reduction of Internal Clearance:

Applying preload reduces the internal clearance between the rolling elements and the raceways. This eliminates play within the bearing, ensuring that the rolling elements are in constant contact with the raceways. This reduced internal clearance enhances precision and reduces vibrations during operation.

  • Increased Stiffness:

Preloaded bearings are stiffer due to the elimination of internal clearance. This increased stiffness improves the bearing’s ability to handle axial and radial loads with higher accuracy and minimal deflection.

  • Minimized Axial Play:

Preload minimizes or eliminates axial play within the bearing. This is especially important in applications where axial movement needs to be minimized, such as machine tool spindles and precision instruments.

  • Enhanced Rigidity:

The stiffness resulting from preload enhances the bearing’s rigidity, making it less susceptible to deformation under load. This is critical for maintaining precision and accuracy in applications that require minimal deflection.

  • Reduction in Ball Slippage:

Preload reduces the likelihood of ball slippage within the bearing, ensuring consistent contact between the rolling elements and the raceways. This leads to improved efficiency and better load distribution.

  • Improved Running Accuracy:

Preloading enhances the running accuracy of the bearing, ensuring that it maintains precise rotational characteristics even under varying loads and speeds. This is essential for applications requiring high accuracy and repeatability.

  • Optimized Performance at High Speeds:

Preload helps prevent skidding and slipping of the rolling elements during high-speed operation. This ensures that the bearing remains stable, reducing the risk of noise, vibration, and premature wear.

  • Impact on Friction and Heat Generation:

While preload reduces internal clearance and friction, excessive preload can lead to higher friction and increased heat generation. A balance must be struck between optimal preload and minimizing friction-related issues.

  • Application-Specific Considerations:

The appropriate amount of preload depends on the application’s requirements, such as load, speed, accuracy, and operating conditions. Over-preloading can lead to increased stress and premature bearing failure, while under-preloading may result in inadequate rigidity and reduced performance.

Overall, preload plays a critical role in optimizing the performance, accuracy, and efficiency of ball bearings. Engineers must carefully determine the right preload level for their specific applications to achieve the desired performance characteristics and avoid potential issues related to overloading or inadequate rigidity.

ball bearing

What Role do Seals and Shields Play in Protecting Ball Bearings from Dirt and Debris?

Seals and shields are critical components of ball bearings that play a crucial role in protecting them from dirt, debris, moisture, and contaminants in various applications. These protective features help maintain the integrity of the bearing’s internal components and ensure reliable operation. Here’s how seals and shields contribute to bearing protection:

  • Contaminant Exclusion:

Seals and shields create a physical barrier between the external environment and the bearing’s interior. They prevent dust, dirt, water, and other contaminants from entering the bearing and coming into contact with the rolling elements and raceways.

  • Lubrication Retention:

Seals and shields help retain lubrication within the bearing. They prevent the lubricant from escaping and contaminants from entering, ensuring that the bearing remains properly lubricated for smooth operation and reduced friction.

  • Corrosion Prevention:

Seals and shields protect bearing components from exposure to moisture and corrosive substances. By preventing moisture ingress, they help extend the bearing’s lifespan by minimizing the risk of corrosion-related damage.

  • Extended Bearing Life:

Seals and shields contribute to the overall longevity of the bearing by reducing wear and damage caused by contaminants. They help maintain a clean internal environment, which promotes proper rolling contact and minimizes the risk of premature failure.

  • Enhanced Performance in Harsh Environments:

In applications exposed to harsh conditions, such as outdoor machinery or industrial settings, seals and shields are vital. They protect bearings from abrasive particles, chemicals, and extreme temperatures, ensuring reliable performance despite challenging conditions.

  • Noise and Vibration Reduction:

Seals and shields can help reduce noise and vibration generated by the bearing. They provide additional damping and stability, contributing to smoother operation and enhanced user comfort in noise-sensitive applications.

  • Customized Protection:

Manufacturers offer a variety of seal and shield designs to suit different application requirements. Some seals provide higher levels of protection against contamination, while others are designed for high-speed or high-temperature environments.

  • Trade-Offs:

While seals and shields offer significant benefits, they can also introduce some friction due to contact with the bearing’s inner or outer ring. Engineers must balance the level of protection with the desired operating characteristics, considering factors like friction, speed, and environmental conditions.

Overall, seals and shields play a vital role in maintaining the integrity and performance of ball bearings. By effectively preventing contaminants from entering and preserving lubrication, they ensure the smooth and reliable operation of machinery and equipment in a wide range of applications.

ball bearing

What are the Primary Benefits of Using Ball Bearings in Machinery and Equipment?

Ball bearings offer several primary benefits when used in machinery and equipment. Their design and functionality provide advantages that contribute to the efficient and reliable operation of various applications. Here are the key benefits:

  • Reduced Friction:

One of the primary benefits of ball bearings is their ability to minimize friction between moving parts. The rolling motion of the balls reduces the contact area and sliding friction, leading to smoother operation and less energy loss due to frictional heating.

  • Efficient Load Support:

Ball bearings are engineered to support both radial and axial loads, making them versatile for applications with multidirectional forces. This load-bearing capability allows machinery to handle different types of loads while maintaining performance and stability.

  • Smooth Rotation:

Ball bearings enable smooth and precise rotational movement. The rolling motion of the balls provides consistent motion with minimal resistance, ensuring that machinery operates smoothly and without jerks.

  • High-Speed Capability:

Due to their low friction and efficient rolling action, ball bearings are suitable for high-speed applications. They allow machinery and equipment to achieve and maintain high rotational speeds without excessive wear or heat buildup.

  • Reduced Wear and Maintenance:

The reduced friction in ball bearings leads to lower wear on components. This results in longer service intervals and reduced maintenance requirements, saving both time and maintenance costs.

  • Energy Efficiency:

By minimizing friction and reducing energy losses, ball bearings contribute to the overall energy efficiency of machinery. This is particularly important in applications where energy consumption is a concern.

  • Versatility:

Ball bearings come in various types, sizes, and configurations, allowing them to be used in a wide range of machinery and equipment. They can be customized to suit specific application requirements.

  • Reliability and Longevity:

Ball bearings are designed to withstand heavy loads and harsh operating conditions. Their durability and resistance to wear ensure reliable performance and an extended operational life.

  • Quiet Operation:

Ball bearings contribute to quiet machinery operation due to the smooth rolling motion of the balls. This is particularly important in applications where noise reduction is a consideration.

In summary, the primary benefits of using ball bearings in machinery and equipment include reduced friction, efficient load support, smooth rotation, high-speed capability, reduced wear and maintenance, energy efficiency, versatility, reliability, and quiet operation. These benefits collectively enhance the performance and longevity of machinery across various industries.

China Hot selling for Turbocharger Bearing 636 Zz 636 2RS Low Noise Chrome Steel Deep Groove Ball Bearing 636 6X22X7mm   bearing driverChina Hot selling for Turbocharger Bearing 636 Zz 636 2RS Low Noise Chrome Steel Deep Groove Ball Bearing 636 6X22X7mm   bearing driver
editor by CX 2024-05-16