Tag Archives: bearing single row ball

China Custom Active-Power Industries 61004 2z Deep Groove Ball Bearing 6417-2RS Single Row Deep Groove Ball Bearing China Distributors bearing driver kit

Product Description

ACTIVE-POWER INDUSTRIES 61004 2Z Deep Groove Ball Bearing 6417-2RS Single Row Deep Groove Ball Bearing China Distributors

Product Description

Deep groove ball bearings (GB/T 276-2003) The original list of radial ball bearings is the most widely used rolling bearing. It is characterized by small frictional resistance and high speed and can be used on parts that bear radial loads or joint loads that act simultaneously in radial and axial directions and can also be used on parts that bear axial loads, such as small-power motors, Automotive and tractor gearboxes, machine tool gearboxes, general machines, tools, etc.

Deep groove ball bearings are the most common type of rolling bearings:

The basic deep groove ball bearing consists of an outer ring, an inner ring, a set of steel balls, and a set of cages. There are 2 types of deep groove ball bearings: single-row and double-row. The structure of deep groove balls is also divided into 2 types: sealed and open. The open type means that the bearing does not have a sealed structure. seal. The material of the dust-proof sealing cover is stamped steel plate, which simply prevents dust from entering the bearing raceway. The oil-proof type is a contact oil seal, which can effectively prevent the grease in the bearing from overflowing.

The type code of single row deep groove ball bearing is 6, and the code name of double row deep groove ball bearing is 4. Its structure is simple, and easy to use, and it is the most commonly produced and widely used type of bearing.

 

According to the size of deep groove ball bearings, they can be divided into:

(1) Miniature bearings – bearings with a nominal outer diameter of 26mm or less;
(2) Small bearings – bearings with a nominal outer diameter ranging from 28 to 55mm;
(3) Small and medium-sized bearings – bearings with a nominal outer diameter ranging from 60-115mm;
(4) Medium and large bearings – bearings with a nominal outer diameter ranging from 120-190mm
(5) Large bearings – bearings with a nominal outer diameter ranging from 200-430mm;
(6) Extra-large bearings – bearings with a nominal outer diameter of 440mm or more.
 

Product Parameters

Product Name Deep Groove Ball Bearing
Material Gcr15
Size 5mm-500mm
Precision Rating P0 P6 P5 P4 P2
Clearance C2 C0 C3 C4 C5
Seals Type Z ZZ 2RS ZNR 2RS1 2RSH 2RSL 2RZ 2Z 2ZNR, Z ZZ 2RS ZNR 2RS1 2RSH 2RSL 2RZ 2Z 2ZNR

      CHROME STEEL*                    Dimensions in mm unless otherwise specified
      Bore      O.D.   Width Open Bearing Shielded Bearing Sealed Bearing       Basic Load Ratings
                    KN
HNS HNS HNS dynamic static
Reference Reference Reference C Co
20 42 12 6004 6004ZZ 6004-2RS 7.22 4.46
47 14 6204 6204ZZ 6204-2RS 12.7 6.5
52 15 6304 6304ZZ 6304-2RS 15.9 7.8
25 47 12 6005 6005ZZ 6005-2RS 10.1 5.85
52 15 6205 6205ZZ 6205-2RS 14 7.8
62 17 6305 6305ZZ 6305-2RS 22.5 11.6
80 21 6405 6405ZZ 6405-2RS 36.1 19.4
30 55 13 6006 6006ZZ 6006-2RS 10.2 6.91
62 16 6206 6206ZZ 6206-2RS 19.5 11.2
72 19 6306 6306ZZ 6306-2RS 28.1 16
90 23 6406 6406ZZ 6406-2RS 43.4 23.9
35 62 14 6007 6007ZZ 6007-2RS 16 10.3
72 17 6207 6207ZZ 6207-2RS 25.5 15.3
80 21 6307 6307ZZ 6307-2RS 33.2 19
100 25 6407 6407ZZ 6407-2RS 55 31
40 68 15 6008 6008ZZ 6008-2RS 13 11.5
80 18 6208 6208ZZ 6208-2RS 29.8 18
90 23 6308 6308ZZ 6308-2RS 39.8 23.3
110 27 6408 6408ZZ 6408-2RS 65.5 37.5
45 75 16 6009 6009ZZ 6009-2RS 21 14.9
85 19 6209 6209ZZ 6209-2RS 32.2 21
100 25 6309 6309ZZ 6309-2RS 51.1 30.5
120 29 6409 6409ZZ 6409-2RS 77.5 45.5
50 80 16 6571 6571ZZ 6571-2RS 22 16.2
90 20 6210 6210ZZ 6210-2RS 34 22.5
110 27 6310 6310ZZ 6310-2RS 59.9 36.9
130 31 6410 6410ZZ 6410-2RS 92.2 55.2
55 90 18 6011 6011ZZ 6011-2RS 30.4 22
100 21 6211 6211ZZ 6211-2RS 43.3 28.1
120 29 6311 6311ZZ 6311-2RS 71.5 44.6
140 33 6411 6411ZZ 6411-2RS 100 62.5
60 95 18 6012 6012ZZ 6012-2RS 30.7 22.7
110 22 6212 6212ZZ 6212-2RS 46.1 31.5
130 31 6312 6312ZZ 6312-2RS 79.4 50.4
150 35 6412 6412ZZ 6412-2RS 109 70
65 100 18 6013 6013ZZ 6013-2RS 32.1 24.9
120 23 6213 6213ZZ 6213-2RS 54.2 39.3
140 33 6313 6313ZZ 6313-2RS 89.5 59.7
160 37 6413 6413ZZ 6413-2RS 118 78.5
70 110 20 6014 6014ZZ 6014-2RS 38.6 30.6
125 24 6214 6214ZZ 6214-2RS 58.9 43.6
150 35 6314 6314ZZ 6314-2RS 101 66
180 42 6414 6414ZZ 6414-2RS 140 99.5
75 115 20 6015 6015ZZ 6015-2RS 31 33.1
130 25 6215 6215ZZ 6215-2RS 64.3 47.5
160 37 6315 6315ZZ 6315-2RS 111 74.2
190 45 6415 6415ZZ 6415-2RS 154 115
80 125 22 6016 6016ZZ 6016-2RS 47.5 39.8
140 26 6216 6216ZZ 6216-2RS 68.1 53.3
170 39 6316 6316ZZ 6316-2RS 120 83.9
200 48 6416 6416ZZ 6416-2RS 163 125
85 130 22 6017 6017ZZ 6017-2RS 50.8 42.8
150 28 6217 6217ZZ 6217-2RS 83.2 64
180 41 6317 6317ZZ 6317-2RS 132 96.5
210 52 6417 6417ZZ 6417-2RS 175 138
90 140 24 6018 6018ZZ 6018-2RS 58 49.8
160 30 6218 6218ZZ 6218-2RS 92.7 71.3
190 43 6318 6318ZZ 6318-2RS 145 108
225 54 6418 6418ZZ 6418-2RS 192 158
95 145 24 6019 6019ZZ 6019-2RS 57.8 50
170 32 6219 6219ZZ 6219-2RS 105 79.1
200 45 6319 6319ZZ 6319-2RS 157 122
100 150 24 6571 6571ZZ 6571-2RS 64.5 56.2
180 34 6220 6220ZZ 6220-2RS 118 88.4
215 47 6320 6320ZZ 6320-2RS 173 140
105 160 26 6571 6571ZZ 6571-2RS 71.8 63.2
190 36 6221 6221ZZ 6221-2RS 126 98.8
225 49 6321 6321ZZ 6321-2RS 173 145
110 170 28 6571 6571ZZ 6571-2RS 81.9 72.9
200 38 6222 6222ZZ 6222-2RS 136 112
240 50 6322 6322ZZ 6322-2RS 193 171
120 180 28 6571 6571ZZ 6571-2RS 88.7 79.7
215 40 6224 6224ZZ 6224-2RS 139 112
260 55 6324 6324ZZ 6324-2RS 217 196
130 200 33 6026 6026ZZ 6026-2RS 105 96.8
230 40 6226 6226ZZ 6226-2RS 148 125
280 58 6326 6326ZZ 6326-2RS 218 205
140 210 33 6571 6571ZZ 6571-2RS 116 108
250 42 6228 6228ZZ 6228-2RS 179 167
300 62 6328 6328ZZ 6328-2RS 275 272
150 225 35 6030 6030ZZ 6030-2RS 132 125
270 45 6230 6230ZZ 6230-2RS 190 183
160 240 38 6032 6032ZZ 6032-2RS 145 138
290 48 6232 6232ZZ 6232-2RS 215 218

Company Profile

HangZhou Active-Power Industrial. is located in HangZhou, ZheJiang , China. The factory has been committed to the production research and development of bearings for more than 20 years. We support OEM and ODM bearing customization.

The main products are: Deep Groove Ball Bearing Taper Roller Bearing Tapered Roller Bearing Auto Wheel Hub Bearing Cylindrical Roller Bearing Spherical Roller Bearing Motor Bearing Needle Roller Bearing Angular Contact Ball Bearing.

FAQ

Q1:What is your Before-sales Service?
1>. Offer to bear related consultation about technology and application;

2>.Help customers with bearing choice, clearance configuration, product” life, and reliability analysis;

3>. Offer highly cost-effective and complete solution program according to site conditions;

4>. Offer localized program on introduced equipment to save running cost

Q2: What is your After-sales Service?
1>. Offer training about bearing installation and maintenance;

2>.Help customers with trouble diagnosis and failure analysis;

3>. Visit customers regularly and feedback on their rational suggestions and requirements to the company.

Q3: How about your company’s strength?
1>.FREE SAMPLES:
contact us by email or trade manager, we will send the free samples according to your request. 

2>. World-Class Bearing:
We provide our customers with all types of indigenous roller bearings of world-class quality.

3>.OEM or Non-Stand Bearings: 
Any requirement for Non-standard roller bearings is Easily Fulfilled by us due to our vast knowledge and links in the industry. 

4>.Genuine products With Excellent Quality: 
The company has always proved the 100% quality products it provides with genuine intent.

5>. After-Sales Service and Technical Assistance: 
The company provides after-sales service and technical assistance as per the customer’s requirements and needs.

6>.Quick Delivery: 
The company provides just-in-time delivery with its streamlined supply chain.

7>.Cost Saving: 
We provide long-life, shock-resistant, and high-reliability roller bearings with excellent quality and better performance.
Resulting in increased cost savings.

Q4: What will we do if you are not satisfied with the product?
A: If have any abnormal, Please contact us at the first time, and we will immediately process

Q5: How long will you respond to our problems?
A: We will respond within 1 hour. 24 hours to solve your problem

Q6: Is optional lubrication provided?
A: We can offer a wide range of oils and greases for a variety of applications. Please contact our engineer for technical
assistance with any special requirements

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Product Name: Auto Bearing
Keywords: Deep Groove Ball Bearing
Precision Rating: P0 P6 P5 P4 P2
Width Size: 9mm-300mm
Diameter Size: 30mm-1600mm
Inner Diameter Size: 10mm-1320mm
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

Are there Specific Maintenance Practices to Ensure the Longevity of Ball Bearings?

Maintaining ball bearings is essential to ensure their longevity, reliable performance, and prevent premature failure. Proper maintenance practices can extend the lifespan of ball bearings and the equipment they are used in. Here are specific maintenance practices to consider:

  • Regular Lubrication:

Implement a regular lubrication schedule using the appropriate lubricant for the application. Lubrication reduces friction, prevents wear, and helps dissipate heat. Follow manufacturer guidelines for lubricant type, quantity, and frequency.

  • Clean Environment:

Keep the operating environment clean and free from contaminants. Dust, dirt, and debris can infiltrate bearings and cause damage. Use seals or shields to protect bearings from contaminants, especially in harsh environments.

  • Proper Installation:

Ensure correct installation of bearings using proper tools and techniques. Improper installation can lead to misalignment, uneven load distribution, and premature wear. Follow manufacturer recommendations for installation procedures.

  • Regular Inspections:

Perform routine visual inspections to check for signs of wear, damage, or contamination. Regular inspections can help identify issues early and prevent further damage. Pay attention to noise, vibration, and temperature changes.

  • Temperature Monitoring:

Monitor bearing temperatures during operation using infrared thermometers or sensors. Abnormal temperature increases can indicate inadequate lubrication, misalignment, or other problems.

  • Correct Handling:

Handle bearings with care to prevent damage during storage, transportation, and installation. Avoid dropping or subjecting them to impacts that can affect their internal components.

  • Bearing Removal and Replacement:

Follow proper procedures when removing and replacing bearings. Use appropriate tools and techniques to avoid damage to the bearing or the surrounding components.

  • Alignment Maintenance:

Maintain proper shaft and housing alignment to prevent excessive loads and wear on the bearing. Misalignment can lead to increased stress and premature failure.

  • Training and Education:

Provide training to operators and maintenance personnel on proper bearing maintenance and handling practices. Educated personnel are more likely to identify issues and perform maintenance correctly.

  • Documented Records:

Keep records of maintenance activities, inspections, lubrication schedules, and any issues encountered. This documentation helps track the bearing’s performance over time and informs future maintenance decisions.

By implementing these maintenance practices, you can ensure the longevity of ball bearings, minimize downtime, reduce operational costs, and maintain the reliability of the equipment they are a part of.

ball bearing

What Precautions should be taken to Prevent Contamination of Ball Bearings in Industrial Settings?

Preventing contamination of ball bearings is essential to ensure their proper function, longevity, and overall performance in industrial settings. Contaminants such as dust, dirt, debris, and particles can significantly impact bearing operation. Here are important precautions to take to prevent contamination of ball bearings:

  • Effective Sealing:

Choose ball bearings with appropriate seals or shields to prevent the ingress of contaminants. Seals provide a physical barrier against dust, moisture, and particles, ensuring the bearing’s interior remains clean.

  • Clean Environment:

Maintain a clean working environment around the machinery and equipment. Regularly clean the surrounding areas to prevent the accumulation of dirt and debris that could enter the bearings.

  • Proper Handling:

Handle bearings with clean hands and use gloves if necessary. Avoid touching the bearing surfaces with bare hands, as natural skin oils can transfer contaminants onto the bearing.

  • Clean Tools and Equipment:

Use clean tools and equipment during installation and maintenance to prevent introducing contaminants. Ensure that tools are properly cleaned before coming into contact with the bearing components.

  • Contamination-Controlled Workstations:

Establish contamination-controlled workstations for bearing handling, installation, and maintenance. These areas should have proper ventilation, filtered air, and minimal exposure to external contaminants.

  • Proper Lubrication:

Use the correct lubricant in appropriate quantities. Lubricants help create a barrier against contaminants and reduce friction. Regularly inspect and replenish lubrication to maintain its effectiveness.

  • Regular Inspections:

Implement a routine inspection schedule to monitor the condition of the bearings. Look for signs of contamination, wear, and damage. Address any issues promptly to prevent further damage.

  • Training and Education:

Train personnel on proper handling, installation, and maintenance practices to minimize the risk of contamination. Educated employees are more likely to take precautions and prevent accidental contamination.

  • Environmental Controls:

In sensitive environments, such as clean rooms or medical facilities, implement strict environmental controls to minimize the presence of contaminants that could affect bearing performance.

  • Regular Cleaning and Maintenance:

Perform regular cleaning and maintenance of machinery and equipment to prevent the buildup of contaminants. Keep bearings protected during maintenance to prevent debris from entering during the process.

  • Selection of Suitable Bearings:

Choose bearings that are specifically designed for the application’s environmental conditions. Some bearings have advanced sealing options or specialized coatings that enhance contamination resistance.

By implementing these precautions, industries can significantly reduce the risk of contamination in ball bearings, ensuring smooth operation, extended bearing life, and enhanced equipment reliability.

ball bearing

How does Lubrication Impact the Performance and Lifespan of Ball Bearings?

Lubrication plays a critical role in the performance and lifespan of ball bearings. Proper lubrication ensures smooth operation, reduces friction, minimizes wear, and prevents premature failure. Here’s how lubrication impacts ball bearings:

  • Friction Reduction:

Lubrication creates a thin film between the rolling elements (balls) and the raceways of the bearing. This film reduces friction by separating the surfaces and preventing direct metal-to-metal contact. Reduced friction results in lower energy consumption, heat generation, and wear.

  • Wear Prevention:

Lubricants create a protective barrier that prevents wear and damage to the bearing’s components. Without proper lubrication, the repeated rolling and sliding of the balls against the raceways would lead to accelerated wear, surface pitting, and eventual failure.

  • Heat Dissipation:

Lubricants help dissipate heat generated during operation. The rolling elements and raceways can generate heat due to friction. Adequate lubrication carries away this heat, preventing overheating and maintaining stable operating temperatures.

  • Corrosion Resistance:

Lubrication prevents moisture and contaminants from coming into direct contact with the bearing’s surfaces. This helps protect the bearing against corrosion, rust, and the formation of debris that can compromise its performance and longevity.

  • Noise Reduction:

Lubricated ball bearings operate quietly because the lubricant cushions and dampens vibrations caused by the rolling motion. This noise reduction is crucial in applications where noise levels need to be minimized.

  • Seal Protection:

Lubricants help maintain the effectiveness of seals or shields that protect the bearing from contaminants. They create a barrier that prevents particles from entering the bearing and causing damage.

  • Improved Efficiency:

Properly lubricated ball bearings operate with reduced friction, leading to improved overall efficiency. This is especially important in applications where energy efficiency is a priority.

  • Lifespan Extension:

Effective lubrication significantly extends the lifespan of ball bearings. Bearings that are properly lubricated experience less wear, reduced fatigue, and a lower likelihood of premature failure.

  • Selection of Lubricant:

Choosing the right lubricant is essential. Factors such as speed, temperature, load, and environmental conditions influence the choice of lubricant type and viscosity. Some common lubricant options include grease and oil-based lubricants.

  • Regular Maintenance:

Regular lubrication maintenance is crucial to ensure optimal bearing performance. Bearings should be inspected and relubricated according to manufacturer recommendations and based on the application’s operating conditions.

In summary, proper lubrication is essential for the optimal performance, longevity, and reliability of ball bearings. It reduces friction, prevents wear, dissipates heat, protects against corrosion, and contributes to smooth and efficient operation in various industrial and mechanical applications.

China Custom Active-Power Industries 61004 2z Deep Groove Ball Bearing 6417-2RS Single Row Deep Groove Ball Bearing China Distributors   bearing driver kitChina Custom Active-Power Industries 61004 2z Deep Groove Ball Bearing 6417-2RS Single Row Deep Groove Ball Bearing China Distributors   bearing driver kit
editor by CX 2024-05-16

China manufacturer Single Row Angular Contact Ball Bearing 7000c wholesaler

Product Description

7000,7200, 7300 series of Single Row Angular Contact Ball Bearings are made of bearing steel, with Bronze, Bakelite, Nylon, Steel retainers for option. They apply to various machines, such as machine centre, gear shaft/drive shaft, chemical fiber thread spinner, etc..

Materials
Races – 52100 bearing steel
Balls – 52100 bearing steel
Retainer – Steel(options: Bakelite/bronze/nylon)

Precision Grade
P0, P6, P5, P4, P2

Angular Contact
15°, 25°, 40°

Bore Dia.
10mm ~400mm

Q1: Can I get a free sample?
A1: We provide samples free in freight collected. For special samples requirement, please contact us for more details. 
Q2: How could I pay?
A2: We prefer T/T or L/C at sight. If you prefer other payment terms, please contact us freely.
Q3: What is your brand and packing way? Can you produce my brand and packing?
A3: Our brand is SGC and our own packing materials. We can make your brand. For more details, please contact us.
Q4: What is the delivery lead time?
A4: It depends on the order quantities. The mass production lead time is about 45-60 days after receipt of the deposit. 
Q5: Are you manufacturer or  trading company?
A5: We are manufacturer and exporter. We provide all kinds of OEM services for clients around the world.
Q6: Where is your main market?
A6: We export to the North America, Mexico, Australia, South-east Asia, Europe, U.A.E., Turkey, and other countries.

Our Services
1. Professional QC and QA team to make sure all products qualified before shipping.
2. Competitive price.
3 .Standard package to ensure the safe transportation.
4. Professional service.

Why choose us?
1. Production
    Qualified production, competitive price, professional service. 
2. Quality
    All products are inspected 100% before shipment by relative testing equipments.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 15, 25, 40
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Radial Bearing
Material: Bearing Steel
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

Can you Provide Examples of Industries where Ball Bearings are Crucial Components?

Ball bearings are essential components in a wide range of industries where smooth motion, load support, and precision are vital. Here are some examples of industries where ball bearings play a crucial role:

  • Automotive Industry:

Ball bearings are used in various automotive applications, including wheel hubs, transmissions, engines, steering systems, and suspension components. They provide reliable rotation and support in both passenger vehicles and commercial vehicles.

  • Aerospace Industry:

In the aerospace sector, ball bearings are found in aircraft engines, landing gear systems, control surfaces, and avionics equipment. Their ability to handle high speeds and precision is vital for aviation safety.

  • Industrial Machinery:

Ball bearings are integral to a wide range of industrial machinery, including pumps, compressors, conveyors, machine tools, printing presses, and textile machinery. They facilitate smooth operation and load distribution in these diverse applications.

  • Medical Equipment:

In medical devices and equipment, ball bearings are used in surgical instruments, imaging equipment, dental tools, and laboratory machinery. Their precision and smooth movement are crucial for accurate diagnostics and treatments.

  • Robotics and Automation:

Ball bearings are key components in robotic arms, automation systems, and manufacturing machinery. They enable precise movement, high-speed operation, and reliable performance in automated processes.

  • Renewable Energy:

Wind turbines and solar tracking systems utilize ball bearings to enable efficient rotation and tracking of the wind blades and solar panels. Ball bearings withstand the dynamic loads and environmental conditions in renewable energy applications.

  • Marine and Shipbuilding:

Ball bearings are used in marine applications such as ship propulsion systems, steering mechanisms, and marine pumps. They withstand the corrosive environment and provide reliable performance in maritime operations.

  • Heavy Equipment and Construction:

In construction machinery like excavators, bulldozers, and cranes, ball bearings support the movement of heavy loads and enable efficient operation in demanding environments.

  • Electronics and Consumer Appliances:

Consumer electronics like electric motors, computer hard drives, and household appliances rely on ball bearings for smooth motion and reliable operation.

  • Oil and Gas Industry:

In oil and gas exploration and extraction equipment, ball bearings are used in drilling rigs, pumps, and processing machinery. They handle the high loads and harsh conditions of this industry.

These examples demonstrate how ball bearings are indispensable components in various industries, contributing to the efficiency, reliability, and functionality of diverse mechanical systems and equipment.

ball bearing

How do Miniature Ball Bearings Differ from Standard-sized Ones, and Where are They Commonly Used?

Miniature ball bearings, as the name suggests, are smaller in size compared to standard-sized ball bearings. They have distinct characteristics and are designed to meet the unique requirements of applications that demand compactness, precision, and efficient rotation in confined spaces. Here’s how miniature ball bearings differ from standard-sized ones and where they are commonly used:

  • Size:

The most noticeable difference is their size. Miniature ball bearings typically have outer diameters ranging from a few millimeters to around 30 millimeters, while standard-sized ball bearings have larger dimensions suitable for heavier loads and higher speeds.

  • Load Capacity:

Due to their smaller size, miniature ball bearings have lower load-carrying capacities compared to standard-sized bearings. They are designed for light to moderate loads and are often used in applications where precision and compactness are prioritized over heavy load support.

  • Precision:

Miniature ball bearings are known for their high precision and accuracy. They are manufactured to tighter tolerances, making them suitable for applications requiring precise motion control and low levels of vibration.

  • Speed:

Miniature ball bearings can achieve higher speeds than standard-sized bearings due to their smaller size and lower mass. This makes them ideal for applications involving high-speed rotation.

  • Friction and Efficiency:

Miniature ball bearings generally have lower friction due to their smaller contact area. This contributes to higher efficiency and reduced heat generation in applications that require smooth and efficient motion.

  • Applications:

Miniature ball bearings find applications in various industries and sectors:

  • Electronics and Consumer Devices:

They are used in small motors, computer disk drives, printers, and miniature fans, where space is limited but precise motion is essential.

  • Medical and Dental Equipment:

Miniature bearings are used in medical devices such as surgical instruments, dental handpieces, and diagnostic equipment due to their precision and compactness.

  • Robotics and Automation:

Miniature ball bearings are integral to robotic arms, miniature conveyors, and automation systems, enabling precise movement in confined spaces.

  • Aerospace and Defense:

They are used in applications like UAVs (drones), aerospace actuators, and satellite components where size and weight constraints are critical.

  • Optics and Instrumentation:

Miniature bearings play a role in optical instruments, cameras, and measuring devices, providing smooth rotation and accurate positioning.

Overall, miniature ball bearings are specialized components designed for applications where space, precision, and efficient rotation are paramount. Their compactness and high precision make them crucial in various industries requiring reliable motion control in limited spaces.

ball bearing

What are the Primary Benefits of Using Ball Bearings in Machinery and Equipment?

Ball bearings offer several primary benefits when used in machinery and equipment. Their design and functionality provide advantages that contribute to the efficient and reliable operation of various applications. Here are the key benefits:

  • Reduced Friction:

One of the primary benefits of ball bearings is their ability to minimize friction between moving parts. The rolling motion of the balls reduces the contact area and sliding friction, leading to smoother operation and less energy loss due to frictional heating.

  • Efficient Load Support:

Ball bearings are engineered to support both radial and axial loads, making them versatile for applications with multidirectional forces. This load-bearing capability allows machinery to handle different types of loads while maintaining performance and stability.

  • Smooth Rotation:

Ball bearings enable smooth and precise rotational movement. The rolling motion of the balls provides consistent motion with minimal resistance, ensuring that machinery operates smoothly and without jerks.

  • High-Speed Capability:

Due to their low friction and efficient rolling action, ball bearings are suitable for high-speed applications. They allow machinery and equipment to achieve and maintain high rotational speeds without excessive wear or heat buildup.

  • Reduced Wear and Maintenance:

The reduced friction in ball bearings leads to lower wear on components. This results in longer service intervals and reduced maintenance requirements, saving both time and maintenance costs.

  • Energy Efficiency:

By minimizing friction and reducing energy losses, ball bearings contribute to the overall energy efficiency of machinery. This is particularly important in applications where energy consumption is a concern.

  • Versatility:

Ball bearings come in various types, sizes, and configurations, allowing them to be used in a wide range of machinery and equipment. They can be customized to suit specific application requirements.

  • Reliability and Longevity:

Ball bearings are designed to withstand heavy loads and harsh operating conditions. Their durability and resistance to wear ensure reliable performance and an extended operational life.

  • Quiet Operation:

Ball bearings contribute to quiet machinery operation due to the smooth rolling motion of the balls. This is particularly important in applications where noise reduction is a consideration.

In summary, the primary benefits of using ball bearings in machinery and equipment include reduced friction, efficient load support, smooth rotation, high-speed capability, reduced wear and maintenance, energy efficiency, versatility, reliability, and quiet operation. These benefits collectively enhance the performance and longevity of machinery across various industries.

China manufacturer Single Row Angular Contact Ball Bearing 7000c   wholesalerChina manufacturer Single Row Angular Contact Ball Bearing 7000c   wholesaler
editor by CX 2024-05-09

China Standard Single Row Deep Groove Ball Bearing Zro2 Full Ceramic Bearing 6802 2RS for Bicycle Hub bearing air

Product Description

Product name High Quality full Ceramic Bearings bearing  ceramic ball bearing
Type  
Structure Ceramic Bearings
Material Ceramic Bearings
Delivery time 5-15days depends on quantity needed
Service OEM service, according to customer requirements.
Quality Large bearing capacity, high speed, low noise.

 

Company Profile

 

In order to meet the needs of the masses of customers and improve the market competitiveness of our company,
we can provide OEM service according to our customers′ Needs. We have gained ISO9001 certificate, CE certificate,
GOST certificate and SGS certificate. Our target is to carry out the strategic investment along with the development
of market and need of new products. With our strategic, excellent products, top technology and outstanding service,
we sincerely expect cooperation with more customers and friends for a better future. Our main products include
spherical roller bearing, deep groove ball bearings, cylindrical roller bearings, spherical roller bearings, needle roller
bearings, ball bearing units, water pump bearings, automobile bearing, linear motion bearing, oil-less bearings,
bush and self-lubricating bearings, and non-standard bearings. Also, we supply bearings to our domestic peeling
machine factory and the machine exported to India, Malaysia and Russia, no any complaint from customer until now.

“zero defect, zero complaints” as the quality objective.

FAQ

Q: Are you trading company or manufacturer ?

A: We are a trading company specializing in exporting bearings.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the 

goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge

Q.You provide free consultation service?

Yes, before, during and after order, anytime.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Element: Single Row
Material: Bearing Steel
Load Direction: Axial Bearing
Rod End: General
Model: GEH
Application: Engineering Hydraulic Cylinder, Water Conservancy Machinery
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

How does Preload Affect the Performance and Efficiency of Ball Bearings?

Preload is a crucial factor in ball bearing design that significantly impacts the performance, efficiency, and overall behavior of the bearings in various applications. Preload refers to the intentional axial force applied to the bearing’s rolling elements before it is mounted. This force eliminates internal clearance and creates contact between the rolling elements and the raceways. Here’s how preload affects ball bearing performance:

  • Reduction of Internal Clearance:

Applying preload reduces the internal clearance between the rolling elements and the raceways. This eliminates play within the bearing, ensuring that the rolling elements are in constant contact with the raceways. This reduced internal clearance enhances precision and reduces vibrations during operation.

  • Increased Stiffness:

Preloaded bearings are stiffer due to the elimination of internal clearance. This increased stiffness improves the bearing’s ability to handle axial and radial loads with higher accuracy and minimal deflection.

  • Minimized Axial Play:

Preload minimizes or eliminates axial play within the bearing. This is especially important in applications where axial movement needs to be minimized, such as machine tool spindles and precision instruments.

  • Enhanced Rigidity:

The stiffness resulting from preload enhances the bearing’s rigidity, making it less susceptible to deformation under load. This is critical for maintaining precision and accuracy in applications that require minimal deflection.

  • Reduction in Ball Slippage:

Preload reduces the likelihood of ball slippage within the bearing, ensuring consistent contact between the rolling elements and the raceways. This leads to improved efficiency and better load distribution.

  • Improved Running Accuracy:

Preloading enhances the running accuracy of the bearing, ensuring that it maintains precise rotational characteristics even under varying loads and speeds. This is essential for applications requiring high accuracy and repeatability.

  • Optimized Performance at High Speeds:

Preload helps prevent skidding and slipping of the rolling elements during high-speed operation. This ensures that the bearing remains stable, reducing the risk of noise, vibration, and premature wear.

  • Impact on Friction and Heat Generation:

While preload reduces internal clearance and friction, excessive preload can lead to higher friction and increased heat generation. A balance must be struck between optimal preload and minimizing friction-related issues.

  • Application-Specific Considerations:

The appropriate amount of preload depends on the application’s requirements, such as load, speed, accuracy, and operating conditions. Over-preloading can lead to increased stress and premature bearing failure, while under-preloading may result in inadequate rigidity and reduced performance.

Overall, preload plays a critical role in optimizing the performance, accuracy, and efficiency of ball bearings. Engineers must carefully determine the right preload level for their specific applications to achieve the desired performance characteristics and avoid potential issues related to overloading or inadequate rigidity.

ball bearing

How do Miniature Ball Bearings Differ from Standard-sized Ones, and Where are They Commonly Used?

Miniature ball bearings, as the name suggests, are smaller in size compared to standard-sized ball bearings. They have distinct characteristics and are designed to meet the unique requirements of applications that demand compactness, precision, and efficient rotation in confined spaces. Here’s how miniature ball bearings differ from standard-sized ones and where they are commonly used:

  • Size:

The most noticeable difference is their size. Miniature ball bearings typically have outer diameters ranging from a few millimeters to around 30 millimeters, while standard-sized ball bearings have larger dimensions suitable for heavier loads and higher speeds.

  • Load Capacity:

Due to their smaller size, miniature ball bearings have lower load-carrying capacities compared to standard-sized bearings. They are designed for light to moderate loads and are often used in applications where precision and compactness are prioritized over heavy load support.

  • Precision:

Miniature ball bearings are known for their high precision and accuracy. They are manufactured to tighter tolerances, making them suitable for applications requiring precise motion control and low levels of vibration.

  • Speed:

Miniature ball bearings can achieve higher speeds than standard-sized bearings due to their smaller size and lower mass. This makes them ideal for applications involving high-speed rotation.

  • Friction and Efficiency:

Miniature ball bearings generally have lower friction due to their smaller contact area. This contributes to higher efficiency and reduced heat generation in applications that require smooth and efficient motion.

  • Applications:

Miniature ball bearings find applications in various industries and sectors:

  • Electronics and Consumer Devices:

They are used in small motors, computer disk drives, printers, and miniature fans, where space is limited but precise motion is essential.

  • Medical and Dental Equipment:

Miniature bearings are used in medical devices such as surgical instruments, dental handpieces, and diagnostic equipment due to their precision and compactness.

  • Robotics and Automation:

Miniature ball bearings are integral to robotic arms, miniature conveyors, and automation systems, enabling precise movement in confined spaces.

  • Aerospace and Defense:

They are used in applications like UAVs (drones), aerospace actuators, and satellite components where size and weight constraints are critical.

  • Optics and Instrumentation:

Miniature bearings play a role in optical instruments, cameras, and measuring devices, providing smooth rotation and accurate positioning.

Overall, miniature ball bearings are specialized components designed for applications where space, precision, and efficient rotation are paramount. Their compactness and high precision make them crucial in various industries requiring reliable motion control in limited spaces.

ball bearing

What are the Different Components that Make up a Typical Ball Bearing?

A typical ball bearing consists of several essential components that work together to reduce friction and support loads. Here are the main components that make up a ball bearing:

  • Outer Ring:

The outer ring is the stationary part of the bearing that provides support and houses the other components. It contains raceways (grooves) that guide the balls’ movement.

  • Inner Ring:

The inner ring is the rotating part of the bearing that attaches to the shaft. It also contains raceways that correspond to those on the outer ring, allowing the balls to roll smoothly.

  • Balls:

The spherical balls are the rolling elements that reduce friction between the inner and outer rings. Their smooth rolling motion enables efficient movement and load distribution.

  • Cage or Retainer:

The cage, also known as the retainer, maintains a consistent spacing between the balls. It prevents the balls from touching each other, reducing friction and preventing jamming.

  • Seals and Shields:

Many ball bearings include seals or shields to protect the internal components from contaminants and retain lubrication. Seals provide better protection against contaminants, while shields offer less resistance to rotation.

  • Lubricant:

Lubrication is essential to reduce friction, wear, and heat generation. Bearings are typically filled with lubricants that ensure smooth movement between the balls and raceways.

  • Flanges and Snap Rings:

In some designs, flanges or snap rings are added to help position and secure the bearing in its housing or on the shaft. Flanges prevent axial movement, while snap rings secure the bearing radially.

  • Raceways:

Raceways are the grooved tracks on the inner and outer rings where the balls roll. The shape and design of the raceways influence the bearing’s load-carrying capacity and performance.

  • Anti-Friction Shield:

In certain high-speed applications, a thin anti-friction shield can be placed between the inner and outer rings to minimize friction and heat generation.

These components work together to enable the smooth rolling motion, load support, and reduced friction that characterize ball bearings. The proper design and assembly of these components ensure the bearing’s optimal performance and longevity in various applications.

China Standard Single Row Deep Groove Ball Bearing Zro2 Full Ceramic Bearing 6802 2RS for Bicycle Hub   bearing airChina Standard Single Row Deep Groove Ball Bearing Zro2 Full Ceramic Bearing 6802 2RS for Bicycle Hub   bearing air
editor by CX 2024-05-03

China Standard Great Rigidity Long Life Single Row Angular Contact Ball Bearing bearing engineering

Product Description

 

Features

High limit speed, suitable for high speed occasions;
The rigidity of the bearing can be improved by preload;
Provide a variety of assembly forms, easy to use.

Product Description

Angular contact ball bearings are named because the contact surface between the ball and the inner and outer rings of an angular contact ball bearing is in the form of an included angle.The lock of this kind of bearing is on the outer ring, and generally the inner and outer rings cannot be separated.

 

Single row angular contact ball bearings can only withstand axial loads acting in 1 direction. When subjected to purely radial loads, these bearings must be installed in pairs.
Double row angular contact ball bearings are equivalent to a pair of single row angular contact ball bearings mounted back to back, but takes up relatively less axial space.  The type of this bearing can withstand axial and radial loads in 2 directions, and can limit the axial displacement in the 2 raceway directions of the shaft and the housing. Its contact angle is 30°.

Main applications:
Machine tool spindle, high frequency motor, gas turbine, centrifugal separator, small car front wheel, differential pinion shaft, booster pump, drilling platform, food machinery, inHangZhou head, repair welding machine, low noise cooling tower, electrical equipment, painting equipment, machine tool slot plate, arc welding machine.
 

Product Parameters

We can provide 73, 72, 70, 53, 52 series model.
The blow is 73 series.
 

Product Number Bore Dia
(d)mm
Outer Dia
(D)mm
Width
(B)mm
Dynamic Load Rating
(Cr) (kN)
Static Load Rating
(Cor) (kN)
7300 10 35 11 10.1 4.95
7301 12 37 12 11.2 5.25
7302 15 42 13 13.5 7.2
7303 17 47 14 15.9 8.65
7304 20 52 15 18.7 10.6
7305 25 62 17 26.4 15.8
7306 30 72 19 33.5 22.3
7307 35 80 21 40 26.3
7308 40 90 23 49 33
7309 45 100 25 63.5 44
7310 50 110 27 74 52
7311 55 120 29 86 61.5
7312 60 130 31 98 71.5
7313 65 140 33 111 82
7314 70 150 35 125 93.5
7315 75 160 37 136 106
7316 80 170 39 147 119
7317 85 180 41 159 133
7318 90 190 43 171 147
7319 95 200 45 183 162
7320 100 215 47 207 193
7321 105 225 49 220 210
7322 110 240 50 246 246
7324 120 260 55 246 252
7326 130 280 58 273 293
7328 140 300 62 300 335
7330 150 320 65 330 380
7332 160 340 68 345 420
7334 170 360 72 390 485
7336 180 380 75 410 535
7338 190 400 78 430 585
7340 200 420 80 450 605

This parameter table is not complete, please contact us for details.

Company Profile

ZheJiang CZPT Machinery Co., Ltd, Xihu (West Lake) Dis. High-precision Bearings Co., Ltd belongs to CZPT group. It is located in Industrial Development Zone of Liao-cheng city, which is bearings manufacturing base in China. We have been specialized in the production of auto parts, bearings and retainers since year 1986.

Our factory covers an area of 120,000 sq.m, with a construction area of 66,000 sq.m. There are more than 600 employees, 50 management personnel, 80 technical engineers and 60 quality inspectors. We are famous manufacturer group for our strict quality control system and hard-working team.

There are more than 40 sets of high-precision mold processing equipment, 150 sets of various CNC lathes, 200 sets of white dynamic grinding machines, 120 sets of stamping equipment, 16 sets of special demagnetization machines, 10 sets of high-pressure spray cleaning machines, 6 sets ultrasonic cleaning machines and 6 automatic bearing grinding lines. They are also equipped with advanced hardness tester, length measuring instrument, sine instrument, spectrometer, infrared carbon and sulfur analyzer, CZPT hardness tester, roughness profiler, electronic tensile testing machine, metallographic microscope, projection coordinate instrument, roundness instrument, ABLT-2 life testing machine, three-coordinate testing machine and so on. We are ready to provide customers with high-quality precision bearing products.

Our company passed ISO9001, ISO/TS16949 and IATF16949 quality management system. Our products are CE / SGS certified. Through introducing world-leading technology and bring together domestic high-tech talents, it ensures our rapid growth and competitive advantages.

Sincerely wish you visit our factory!

FAQ

Q1: Do you provide samples? Is it free or extra?

Yes, we can provide a small amount of free samples. Do you mind paying the freight?

Q2: Can you accept OEM or non-standard Bearings ?

Any requirement for non-standard roller bearings is easily fulfilled by us due to our engineers’ rich experience.

Q3: What is your latest delivery time?

Most orders will be shipped within 7-15 days of payment  received.

Q4:Does your company have quality assurance?

Yes, for 2 years.

Q5:Which payment method does your company support?

T/T is best, but we can also accept L/C.

Q6:How to contact us quickly?

Please send us an inquiry or message and leave your other contact information, such as phone number,   or account, we will contact you as soon as possible and provide the detailed information.
 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 15°
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Radial Bearing
Material: Bearing Steel
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

What are the Challenges Associated with Noise Reduction in Ball Bearings?

Noise reduction in ball bearings is a crucial consideration, especially in applications where noise levels must be minimized for operational efficiency and user comfort. While ball bearings are designed to operate smoothly, there are several challenges associated with reducing noise in their operation:

  • Vibration:

Vibration generated by the movement of rolling elements and raceways can lead to noise. Even minor irregularities in bearing components or the mounting system can cause vibration that translates into audible noise.

  • Bearing Type and Design:

The type and design of the ball bearing can impact noise generation. For example, deep groove ball bearings are known for their quiet operation, while angular contact bearings can generate more noise due to their higher contact angles.

  • Lubrication:

Improper or inadequate lubrication can result in increased friction and wear, leading to noise. Choosing the right lubricant and maintaining proper lubrication levels are essential for reducing noise in ball bearings.

  • Bearing Clearance and Preload:

Incorrect clearance or preload settings can lead to noise issues. Excessive clearance or inadequate preload can cause the rolling elements to impact the raceways, resulting in noise during rotation.

  • Material and Manufacturing Quality:

The quality of materials and manufacturing processes can affect noise levels. Inconsistent or low-quality materials, improper heat treatment, or manufacturing defects can lead to noise generation during operation.

  • Surface Finish:

The surface finish of the rolling elements and raceways can impact noise. Rough surfaces can generate more noise due to increased friction and potential irregularities.

  • Sealing and Shielding:

Seals and shields that protect bearings can influence noise levels. While they are necessary for contamination prevention, they can also cause additional friction and generate noise.

  • Operating Conditions:

External factors such as temperature, speed, and load can influence noise levels. High speeds or heavy loads can amplify noise due to increased stress on the bearing components.

  • Wear and Deterioration:

As ball bearings wear over time, noise levels can increase. Worn components or inadequate lubrication can lead to more significant noise issues as the bearing operates.

To address these challenges and reduce noise in ball bearings, manufacturers and engineers employ various techniques, such as optimizing design, selecting suitable bearing types, using proper lubrication, maintaining accurate preload settings, and ensuring high-quality materials and manufacturing processes. Noise reduction efforts are essential to improve overall product quality, meet noise regulations, and enhance user experience in various applications.

ball bearing

How do Temperature and Environmental Conditions Affect the Performance of Ball Bearings?

Temperature and environmental conditions have a significant impact on the performance and longevity of ball bearings. The operating environment can influence factors such as lubrication effectiveness, material properties, and overall bearing behavior. Here’s how temperature and environmental conditions affect ball bearing performance:

  • Lubrication:

Temperature variations can affect the viscosity and flow characteristics of lubricants. Extreme temperatures can cause lubricants to become too thin or too thick, leading to inadequate lubrication and increased friction. In high-temperature environments, lubricants can degrade, reducing their effectiveness.

  • Material Properties:

Temperature changes can alter the material properties of the bearing components. High temperatures can lead to thermal expansion, affecting bearing clearances and potentially causing interference between components. Extreme cold temperatures can make materials more brittle and prone to fracture.

  • Clearance Changes:

Temperature fluctuations can cause changes in the internal clearance of ball bearings. For instance, at high temperatures, materials expand, leading to increased clearance. This can affect bearing performance, load distribution, and overall stability.

  • Corrosion and Contamination:

Harsh environmental conditions, such as exposure to moisture, chemicals, or abrasive particles, can lead to corrosion and contamination of bearing components. Corrosion weakens the material, while contamination accelerates wear and reduces bearing life.

  • Thermal Stress:

Rapid temperature changes can result in thermal stress within the bearing components. Differential expansion and contraction between the inner and outer rings can lead to stress and distortion, affecting precision and bearing integrity.

  • Noise and Vibration:

Temperature-related changes in material properties and internal clearances can influence noise and vibration levels. Extreme temperatures can lead to increased noise generation and vibration, affecting the overall operation of machinery.

  • Lubricant Degradation:

Environmental factors like humidity, dust, and contaminants can lead to premature lubricant degradation. Oxidation, moisture absorption, and the presence of foreign particles can compromise the lubricant’s performance and contribute to increased friction and wear.

  • Seal Effectiveness:

Seals and shields that protect bearings from contaminants can be affected by temperature fluctuations. Extreme temperatures can lead to seal hardening, cracking, or deformation, compromising their effectiveness in preventing contamination.

  • Choosing Appropriate Bearings:

When selecting ball bearings for specific applications, engineers must consider the expected temperature and environmental conditions. High-temperature bearings, bearings with specialized coatings, and those with enhanced sealing mechanisms may be necessary to ensure reliable performance.

Overall, understanding the impact of temperature and environmental conditions on ball bearing performance is crucial for proper bearing selection, maintenance, and ensuring optimal operation in diverse industries and applications.

ball bearing

What is a Ball Bearing and How does it Function in Various Applications?

A ball bearing is a type of rolling-element bearing that uses balls to reduce friction between moving parts and support radial and axial loads. It consists of an outer ring, an inner ring, a set of balls, and a cage that separates and maintains a consistent spacing between the balls. Here’s how ball bearings function in various applications:

  • Reduction of Friction:

Ball bearings function by replacing sliding friction with rolling friction. The smooth, spherical balls minimize the contact area between the inner and outer rings, resulting in lower friction and reduced heat generation.

  • Radial and Axial Load Support:

Ball bearings are designed to support both radial loads (forces perpendicular to the shaft’s axis) and axial loads (forces parallel to the shaft’s axis). The distribution of balls within the bearing ensures load-carrying capacity in multiple directions.

  • Smooth Rotational Movement:

Ball bearings facilitate smooth and precise rotational movement. The rolling motion of the balls allows for controlled and continuous rotation with minimal resistance.

  • Applications in Machinery:

Ball bearings are used in a wide range of machinery and equipment, including motors, generators, gearboxes, conveyors, and fans. They enable the efficient transfer of motion while reducing wear and energy losses.

  • Automotive Industry:

Ball bearings are extensively used in automobiles for various applications, including wheel hubs, transmission systems, steering mechanisms, and engine components. They provide reliability and durability in challenging automotive environments.

  • Industrial Machinery:

In industrial settings, ball bearings support rotating shafts and ensure the smooth operation of equipment such as pumps, compressors, and machine tools.

  • High-Speed Applications:

Ball bearings are suitable for high-speed applications due to their low friction and ability to accommodate rapid rotation. They are used in applications like electric motors and aerospace components.

  • Precision Instruments:

For precision instruments, such as watches, cameras, and medical devices, ball bearings provide accurate rotational movement and contribute to the overall performance of the instrument.

  • Variety of Sizes and Types:

Ball bearings come in various sizes, configurations, and materials to suit different applications. Different types include deep groove ball bearings, angular contact ball bearings, thrust ball bearings, and more.

In summary, ball bearings are essential components in a wide range of applications where smooth rotation, load support, and reduced friction are critical. Their versatility, reliability, and efficiency make them indispensable in industries spanning from automotive to industrial machinery to precision instruments.

China Standard Great Rigidity Long Life Single Row Angular Contact Ball Bearing   bearing engineeringChina Standard Great Rigidity Long Life Single Row Angular Contact Ball Bearing   bearing engineering
editor by CX 2024-05-02

China Professional CZPT CZPT CZPT High Speed Resistant Double Seal Single Row Deep Groove Ball Bearing5203 bearing driver kit

Product Description

ZHangZhoug Shengya Bearing Technology Co., Ltd offers a Chrome Steel High Speed Resistant Tensioner Bearing with ISO9001 certification. Ideal for CZPT car parts and various automotive applications.

Product Parameters

Product Name: double row bearings
Model Number: 5203
Inner Diameter(mm) 17.5
Outer Diameter(mm) 40
Height(mm) 17
Material Chrome steel
Sealed type OPEN,RZ,2RS,4RS
Tolerance P0,P6,P5,P4,P2
Clearance C2,C0,C3,C4,C5
Noize level Z,Z1,Z2,Z3
Application Automotive Car
OEM Service Accept

Product Description

double row bearings:

-The bearings are adopted optimized structure designing so that can attain the traits of high temperature resistant, high speed resistant, long life, high speed rotation,impact resistant,high radial load,etc.

-Sealing structure and seals have the traits of high sealing ability, heat-resistant, abrasiveness and also can prevent the leakage of the grease, as they are helpful for lengthening the bearings’ using life.

Detailed Photos

More Products

Quality Control

Company Profile

ZHangZhoug Shengya Bearing Technology Co., Ltd was established in 1996, spHangZhou over 10,000 square meters. With assets exceeding 50 million yuan and a workforce of over 80 employees, including 10+ professionals with intermediate and senior titles, we specialize in producing automotive, motorcycle, general machine, precision machine tool, and home appliance bearings. Our annual production capacity reaches 10 million sets of small to medium-sized bearings.

 

We excel in manufacturing various non-standard special-shaped bearings, boasting a wide range of options and meticulous craftsmanship. Situated in HangZhou, HangZhou City, a key industrial, commercial, and tourist hub in ZHangZhoug Province, we benefit from a prime location with easy access to transportation.

FAQ

ZHangZhoug Shengya Bearing Technology Co., Ltd

 

Product Description

 

Welcome to ZHangZhoug Shengya Bearing Technology Co., Ltd! We are a factory + trade company specializing in bearings.

 

Product Features:

 

  • Customizable OEM options available
  • MOQ of 10pcs, with flexibility for lower quantities at a slightly higher cost
  • High-quality bearings made to your specifications
  •  

  •  
  •  

 

Benefits:

 

  • Customized products tailored to your needs
  • Competitive pricing based on quantity purchased
  • Reliable and durable bearings for various applications
  •  

  •  
  •  

 

Contact us today to discuss your bearing requirements and let us provide you with top-notch solutions!

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: One Year Warranty
Warranty: One Year Warranty
Type: Tensioner Bearing
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

ball bearing

What are the Materials Typically Used in Manufacturing Ball Bearings and Their Advantages?

Ball bearings are manufactured using a variety of materials, each chosen for its specific properties and advantages in various applications. Here are some commonly used materials in ball bearing manufacturing and their respective benefits:

  • High-Carbon Chrome Steel (AISI 52100):

This is the most common material used for ball bearing manufacturing. It offers excellent hardness, wear resistance, and fatigue strength. High-carbon chrome steel bearings are suitable for a wide range of applications, from industrial machinery to automotive components.

  • Stainless Steel (AISI 440C, AISI 304, AISI 316):

Stainless steel bearings are corrosion-resistant and suitable for applications where moisture, chemicals, or exposure to harsh environments are concerns. AISI 440C offers high hardness and corrosion resistance, while AISI 304 and AISI 316 provide good corrosion resistance and are often used in food and medical industries.

  • Ceramic:

Ceramic bearings use silicon nitride (Si3N4) or zirconia (ZrO2) balls. Ceramic materials offer high stiffness, low density, and excellent resistance to corrosion and heat. Ceramic bearings are commonly used in high-speed and high-temperature applications, such as in aerospace and racing industries.

  • Plastic (Polyamide, PEEK):

Plastic bearings are lightweight and offer good corrosion resistance. Polyamide bearings are commonly used due to their low friction and wear properties. Polyether ether ketone (PEEK) bearings provide high-temperature resistance and are suitable for demanding environments.

  • Bronze:

Bronze bearings are often used in applications where self-lubrication is required. Bronze has good thermal conductivity and wear resistance. Bearings made from bronze are commonly used in machinery requiring frequent starts and stops.

  • Hybrid Bearings:

Hybrid bearings combine steel rings with ceramic balls. These bearings offer a balance between the advantages of both materials, such as improved stiffness and reduced weight. Hybrid bearings are used in applications where high speeds and low friction are essential.

  • Specialty Alloys:

For specific applications, specialty alloys may be used to meet unique requirements. For example, bearings used in extreme temperatures or corrosive environments may be made from materials like titanium or hastelloy.

  • Coated Bearings:

Bearings may also be coated with thin layers of materials like diamond-like carbon (DLC) or other coatings to enhance performance, reduce friction, and improve wear resistance.

The choice of material depends on factors such as application requirements, operating conditions, load, speed, and environmental factors. Selecting the right material is essential for ensuring optimal bearing performance, longevity, and reliability in diverse industries and applications.

ball bearing

How do Ceramic Ball Bearings Compare to Traditional Steel Ball Bearings in Terms of Performance?

Ceramic ball bearings and traditional steel ball bearings have distinct characteristics that can impact their performance in various applications. Here’s a comparison of how these two types of bearings differ in terms of performance:

  • Material Composition:

Ceramic Ball Bearings:

Ceramic ball bearings use ceramic rolling elements, typically made from materials like silicon nitride (Si3N4) or zirconium dioxide (ZrO2). These ceramics are known for their high hardness, low density, and resistance to corrosion and wear.

Traditional Steel Ball Bearings:

Traditional steel ball bearings use steel rolling elements. The type of steel used can vary, but common materials include chrome steel (52100) and stainless steel (440C). Steel bearings are known for their durability and strength.

  • Friction and Heat:

Ceramic Ball Bearings:

Ceramic bearings have lower friction coefficients compared to steel bearings. This results in reduced heat generation during operation, contributing to higher efficiency and potential energy savings.

Traditional Steel Ball Bearings:

Steel bearings can generate more heat due to higher friction coefficients. This can lead to increased energy consumption in applications where efficiency is crucial.

  • Weight:

Ceramic Ball Bearings:

Ceramic bearings are lighter than steel bearings due to the lower density of ceramics. This weight reduction can be advantageous in applications where minimizing weight is important.

Traditional Steel Ball Bearings:

Steel bearings are heavier than ceramic bearings due to the higher density of steel. This weight may not be as critical in all applications but could impact overall equipment weight and portability.

  • Corrosion Resistance:

Ceramic Ball Bearings:

Ceramic bearings have excellent corrosion resistance, making them suitable for applications in corrosive environments, such as marine or chemical industries.

Traditional Steel Ball Bearings:

Steel bearings are susceptible to corrosion, especially in harsh environments. Stainless steel variants offer improved corrosion resistance but may still corrode over time.

  • Speed and Precision:

Ceramic Ball Bearings:

Ceramic bearings can operate at higher speeds due to their lower friction and ability to withstand higher temperatures. They are also known for their high precision and low levels of thermal expansion.

Traditional Steel Ball Bearings:

Steel bearings can operate at high speeds as well, but their heat generation may limit performance in certain applications. Precision steel bearings are also available but may have slightly different characteristics compared to ceramics.

  • Cost:

Ceramic Ball Bearings:

Ceramic bearings are generally more expensive to manufacture than steel bearings due to the cost of ceramic materials and the challenges in producing precision ceramic components.

Traditional Steel Ball Bearings:

Steel bearings are often more cost-effective to manufacture, making them a more economical choice for many applications.

In conclusion, ceramic ball bearings and traditional steel ball bearings offer different performance characteristics. Ceramic bearings excel in terms of low friction, heat generation, corrosion resistance, and weight reduction. Steel bearings are durable, cost-effective, and widely used in various applications. The choice between the two depends on the specific requirements of the application, such as speed, precision, corrosion resistance, and budget considerations.

ball bearing

What Factors should be Considered when Selecting a Ball Bearing for a Particular Application?

Selecting the right ball bearing for a specific application involves careful consideration of various factors to ensure optimal performance, longevity, and reliability. Here are the key factors that should be taken into account:

  • Load Type and Magnitude:

Determine the type of load (radial, axial, or combined) and the magnitude of the load that the bearing will need to support. Choose a bearing with the appropriate load-carrying capacity to ensure reliable operation.

  • Speed and Operating Conditions:

Consider the rotational speed of the application and the operating conditions, such as temperature, humidity, and exposure to contaminants. Different bearing types and materials are suited for varying speeds and environments.

  • Accuracy and Precision:

For applications requiring high accuracy and precision, such as machine tool spindles or optical instruments, choose high-precision bearings that can maintain tight tolerances and minimize runout.

  • Space Limitations:

If the application has limited space, choose miniature or compact ball bearings that can fit within the available dimensions without compromising performance.

  • Thrust and Radial Loads:

Determine whether the application requires predominantly thrust or radial load support. Choose the appropriate type of ball bearing (thrust, radial, or angular contact) based on the primary load direction.

  • Alignment and Misalignment:

If the application experiences misalignment between the shaft and housing, consider self-aligning ball bearings that can accommodate angular misalignment.

  • Mounting and Installation:

Consider the ease of mounting and dismounting the bearing. Some applications may benefit from features like flanges or snap rings for secure installation.

  • Lubrication and Maintenance:

Choose a bearing with appropriate lubrication options based on the application’s speed and temperature range. Consider whether seals or shields are necessary to protect the bearing from contaminants.

  • Environmental Conditions:

Factor in the operating environment, including exposure to corrosive substances, chemicals, water, or dust. Choose materials and coatings that can withstand the specific environmental challenges.

  • Bearing Material:

Select a bearing material that suits the application’s requirements. Common materials include stainless steel for corrosion resistance and high-carbon chrome steel for general applications.

  • Bearing Arrangement:

Consider whether a single-row, double-row, or multiple bearings in a specific arrangement are needed to accommodate the loads and moments present in the application.

By carefully evaluating these factors, engineers and designers can choose the most suitable ball bearing that aligns with the specific demands of the application, ensuring optimal performance, durability, and overall operational efficiency.

China Professional CZPT CZPT CZPT High Speed Resistant Double Seal Single Row Deep Groove Ball Bearing5203   bearing driver kitChina Professional CZPT CZPT CZPT High Speed Resistant Double Seal Single Row Deep Groove Ball Bearing5203   bearing driver kit
editor by CX 2024-05-02

China supplier Single Row Deep Groove Ball Bearing 62 Series (6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210) Manufacturer with Great quality

Product Description

Specifications of Bearing

skf deep groove ball bearing 6062z 606 rs 606 2rs
Deep groove ball bearing is the most common type of rolling bearing. The basic type of deep groove ball bearing consists of an outer ring, an inner ring, a steel ball and a group of cage. There are 2 kinds of single and double row deep groove ball bearing type, deep groove ball structure also seal and open structure, open is refers to the bearings without sealing structure, sealing type deep groove ball for sealing and dustproof and anti oil seal. The dust cover material is pressed by the steel plate, and only the dust entering the bearing roller can only play a simple way. Anti oil type for the contact type oil seal, can effectively prevent the grease inside the bearing overflow. 

We offer large quantity of deep groove ball bearings every month, following is our specifications. 

1) Material Used: 

GCr15_China/ (AISI) 52100_American/ (Din) 100Cr6_Germany; 
 

2) Types Specialized: 

6000, 6200, 6300Series, with ZZ, 2RS, OPEN available; 
 

3) Dimension Range: 

D (ID): 3-50mm; D(OD): 10-110mm; B(Width): 4-27mm; 
 

4) Clearance: 

C2, C0, C3, C4, C5; 
 

5) Tolerance: 

ABEC1, ABEC3, ABEC5 (P0, P6, P5); 
 

6) Vibration: 

Z1V1, Z2V2, Z3V3; 
 

7) Application: 

Motorcycles, Electric Bicycles, Electric Motors (Scooters), Electric Tools, Fans, Sports Apparatus, Washing Machines, Dust Collectors, 

Ventilators, Textile Machines, Running Machines (Treadmills), Household Appliances, Water Pumps, Agricultural Machines, Precision Machineries, etc. 

Our products are mainly exported to Mideast, India, Pakistan, Canada, Southeast Asia, South America, Singapore, South Korea and other countries all over the world. We have reliable quality and quantity products to provide. We implement the CZPT principle and take the slogan as “the best quality, the best credit and the best service”

Brand Name: NSK, NTN, SKF, TIMKEN, KOYO, IKO, NACHI, HRB
Our company insists on the “quality first, credit first” business ideas and our product specification iswell-founded. We have a good reputation in the international market by our perfect service and sufficient supply. 

Parameters of Bearing

Deep groove ball bearing vibration value clearance national standards
 
 Bearing Designation Size(mm) Vibration value standard decibels (Db) Clearance standard (um) without load
d×D×W Z Z1 Z2 Z3 Z4 C1 C2 C3 C4 C5
6000 10 × 26 × 8 43 42 38 33   0-7 2-13 8-23 14-29 20-37
6001 12 × 28 × 8 44 43 39 34   0-9 3-18 11-25 18-33 25-45
6002 15 × 32 × 9 45 44 40 35   0-9 3-18 11-25 18-33 25-45
6003 17 × 35 × 10 46 44 40 35   0-9 3-18 11-25 18-33 25-45
6004 20 × 42 × 12 47 45 41 36   0-10 5-20 13-28 20-36 28-48
6005 25 × 47 × 12 48 46 42 38   1-11 5-20 13-28 23-41 30-53
6006 30 × 55 × 13 49 47 43 39   1-11 5-20 13-28 23-41 30-53
6007 35 × 52 × 17 51 49 45 41   1-11 6-23 15-33 28-46 40-64
6008 40 × 68 × 15 53 51 45 42   1-11 6-23 15-33 28-46 40-64
6009 45 × 75 × 16 55 53 48 45   1-11 6-23 18-36 30-51 45-73
6571 50 × 80 × 16 57 54 50 47   1-15 8-28 23-43 38-61 55-90
6011 55 × 90 × 18 59 56 52 49   1-15 8-28 23-43 38-61 55-90
6012 60 × 95 × 18 61 58 54 51   1-15 8-28 23-43 38-61 55-90
6013 65 × 100 × 18 49 48 46     1-15 8-28 23-43 38-61 55-90
6014 70 × 110 × 20 50 49 47     1-15 10-30 25-51 46-71 Oct-65
6015 75 × 115 × 20 51 50 48     1-15 10-30 25-51 46-71 Oct-65
6200 10 × 30 × 9 44 42 39 35 30 0-9 3-18 11-25 18-33 25-45
6201 12 × 32 × 10 45 43 39 35 30 0-9 3-18 11-25 18-33 25-45
6202 15 × 35 × 11 46 44 41 36 31 0-9 3-18 11-25 18-33 25-45
6203 17 × 40 × 12 47 45 41 36 31 0-9 3-18 11-25 18-33 25-45
6204 20 × 47 × 14 48 46 42 38 33 0-10 5-20 13-28 20-36 28-48
6205 25 × 52 × 15 49 47 43 40 36 0-11 5-20 13-28 23-41 30-53
6206 30 × 62 × 16 50 48 44 41 37 0-11 5-20 13-28 23-41 30-53
6207 35 × 72 × 17 52 50 46 43 39 0-11 6-23 15-33 28-46 40-64
6208 40 × 80 × 18 54 52 47 44 40 1-11 6-23 15-33 28-46 40-64
6209 45 × 85 × 19 56 54 49 46 43 1-11 6-23 18-36 30-51 45-73
6210 50 × 90 × 20 58 55 51 48 45 1-11 6-23 18-36 30-51 45-73
6211 55 × 100 × 21 60 57 53 50 47 1-15 8-28 23-43 38-61 55-90
6212 60 × 110 × 22 62 59 54 52 48 1-15 8-28 23-43 38-61 55-90
6213 65 × 120 × 23 50 49 47 42   1-15 8-28 23-43 38-61 55-90
6214 70 × 125 × 24 51 50 48 43   1-15 10-30 25-51 46-71 Oct-62
6215 75 × 130 × 25 52 51 49 44   1-15 10-30 25-51 46-71 Oct-62
6300 10 × 35 × 11 46 44 40 37 32 0-9 3-18 11-25 18-33 25-45
6301 12 × 37 × 12 47 45 40 37 32 0-9 3-18 11-25 18-33 25-45
6302 15 × 42 × 13 48 46 42 38 33 0-9 3-18 11-25 18-33 25-45
6303 17 × 47 × 14 49 47 42 38 33 0-9 3-18 11-25 18-33 25-45
6304 20 × 52 × 15 50 48 43 39 34 0-11 5-20 13-28 20-36 28-48
6305 25 × 62 × 17 51 49 44 41 37 1-11 5-20 13-28 23-41 30-53
6306 30 × 72 × 19 52 50 45 42 38 1-11 5-20 13-28 23-41 30-53
6307 35 × 80 × 21 54 52 47 44 40 1-11 6-23 15-33 28-46 40-64
6308 40 × 90 × 23 56 54 49 45 41 1-11 6-23 15-33 28-46 40-64
6309 45 × 100 × 25 58 56 51 47 44 1-11 6-23 18-36 30-51 45-73
6310 50 × 110 × 27 60 57 53 49 46 1-11 6-23 18-36 30-51 45-73
6311 55 × 120 × 29 62 59 54 51 48 1-15 8-28 23-43 38-61 55-90
6312 60 × 30 × 31 64 61 56 53 50 1-15 8-28 23-43 38-61 55-90
6313 65 × 140 × 33 51 50 48 43   1-15 8-28 23-43 38-61 55-90
6314 70 × 150 × 35 52 51 49 44   1-15 10-30 25-51 46-71 Oct-65
6315 75 × 160 × 37 53 52 50 45   1-15 10-30 25-51 46-71 Oct-65

Our Main Products

Our Company

HangZhou Flow Group Ltd is a professional manufacturer of bearings, collecting together production and processing, domestic and foreign trade. The factory specializes in the production and export of many kinds of bearings: deep groove ball bearing, spherical roller bearing, tapered roller bearing, and so on. The customized bearings is also acceptable and the production will be according to your requirements and samples.

All bearings in our factory adopt international quality standards. The complete equipment, strict quality control, advanced Japanese technology and quality service provide a guarantee to supply the high-quality bearings for our customers. Domestic sales and service network has covered 15 major cities in China, meanwhile our bearing has sold more than 60 overseas countries and regions.

Our bearings have been widely used in agriculture, textiles, mining, printing and packaging industries, in addition to applications in airports, air conditioning systems, conveyors and ship also applied.

If you are interested in any of our bearings or have an intention to order, please feel free to contact us.

FAQ

SAMPLES
1.Samples quantity: 1-10 pcs are available.
2.Free samples: It depends on the model NO., material and quantity. Some of the bearings samples need client to pay   samples charge and shipping cost.
3.It’s better to start your order with Trade Assurance to get full protection for your samples order.

CUSTOMIZED
The customized LOGO or drawing is acceptable for us.

MOQ
1.MOQ: 10 pcs mix different standard bearings.
2.MOQ:  5000 pcs customized your brand bearings.

OEM POLICY
1.We can printing your brand (logo,artwork)on the shield or laser engraving your brand on the shield.
2.We can custom your packaging according to your design
3.All copyright own by clients and we promised don’t disclose any info.

SUPORT
Please visit our Clunt bearings website, we strongly encourge that you can communicate with us through email,thanks! /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Model No.: 6200
Product Name: Deep Groove Ball Bearing
Rolling Body: Ball Bearing
Usage: Machine
Size: 10*30*9 mm
Feature: High Speed & Long Life
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

How does Preload Affect the Performance and Efficiency of Ball Bearings?

Preload is a crucial factor in ball bearing design that significantly impacts the performance, efficiency, and overall behavior of the bearings in various applications. Preload refers to the intentional axial force applied to the bearing’s rolling elements before it is mounted. This force eliminates internal clearance and creates contact between the rolling elements and the raceways. Here’s how preload affects ball bearing performance:

  • Reduction of Internal Clearance:

Applying preload reduces the internal clearance between the rolling elements and the raceways. This eliminates play within the bearing, ensuring that the rolling elements are in constant contact with the raceways. This reduced internal clearance enhances precision and reduces vibrations during operation.

  • Increased Stiffness:

Preloaded bearings are stiffer due to the elimination of internal clearance. This increased stiffness improves the bearing’s ability to handle axial and radial loads with higher accuracy and minimal deflection.

  • Minimized Axial Play:

Preload minimizes or eliminates axial play within the bearing. This is especially important in applications where axial movement needs to be minimized, such as machine tool spindles and precision instruments.

  • Enhanced Rigidity:

The stiffness resulting from preload enhances the bearing’s rigidity, making it less susceptible to deformation under load. This is critical for maintaining precision and accuracy in applications that require minimal deflection.

  • Reduction in Ball Slippage:

Preload reduces the likelihood of ball slippage within the bearing, ensuring consistent contact between the rolling elements and the raceways. This leads to improved efficiency and better load distribution.

  • Improved Running Accuracy:

Preloading enhances the running accuracy of the bearing, ensuring that it maintains precise rotational characteristics even under varying loads and speeds. This is essential for applications requiring high accuracy and repeatability.

  • Optimized Performance at High Speeds:

Preload helps prevent skidding and slipping of the rolling elements during high-speed operation. This ensures that the bearing remains stable, reducing the risk of noise, vibration, and premature wear.

  • Impact on Friction and Heat Generation:

While preload reduces internal clearance and friction, excessive preload can lead to higher friction and increased heat generation. A balance must be struck between optimal preload and minimizing friction-related issues.

  • Application-Specific Considerations:

The appropriate amount of preload depends on the application’s requirements, such as load, speed, accuracy, and operating conditions. Over-preloading can lead to increased stress and premature bearing failure, while under-preloading may result in inadequate rigidity and reduced performance.

Overall, preload plays a critical role in optimizing the performance, accuracy, and efficiency of ball bearings. Engineers must carefully determine the right preload level for their specific applications to achieve the desired performance characteristics and avoid potential issues related to overloading or inadequate rigidity.

ball bearing

What are the Differences between Deep Groove Ball Bearings and Angular Contact Ball Bearings?

Deep groove ball bearings and angular contact ball bearings are two common types of ball bearings, each designed for specific applications and load conditions. Here are the key differences between these two types of bearings:

  • Design and Geometry:

Deep Groove Ball Bearings:

Deep groove ball bearings have a simple design with a single row of balls that run along deep raceways in both the inner and outer rings. The rings are usually symmetrical and non-separable, resulting in a balanced load distribution.

Angular Contact Ball Bearings:

Angular contact ball bearings have a more complex design with two rows of balls, oriented at an angle to the bearing’s axis. This arrangement allows for the transmission of both radial and axial loads, making them suitable for combined loads and applications requiring high precision.

  • Load Carrying Capacity:

Deep Groove Ball Bearings:

Deep groove ball bearings are primarily designed to carry radial loads. They can handle axial loads in both directions, but their axial load-carrying capacity is generally lower compared to angular contact ball bearings.

Angular Contact Ball Bearings:

Angular contact ball bearings are specifically designed to handle both radial and axial loads. The contact angle between the rows of balls determines the bearings’ axial load-carrying capacity. They can handle higher axial loads and are commonly used in applications with thrust loads.

  • Contact Angle:

Deep Groove Ball Bearings:

Deep groove ball bearings have no defined contact angle, as the balls move in a deep groove along the raceways. They are primarily designed for radial loads.

Angular Contact Ball Bearings:

Angular contact ball bearings have a specified contact angle between the rows of balls. This contact angle allows them to carry both radial and axial loads and is crucial for their ability to handle combined loads.

  • Applications:

Deep Groove Ball Bearings:

Deep groove ball bearings are commonly used in applications that primarily require radial loads, such as electric motors, pumps, and conveyor systems. They are also suitable for high-speed operation.

Angular Contact Ball Bearings:

Angular contact ball bearings are used in applications where both radial and axial loads are present, such as in machine tools, automotive wheel hubs, and aerospace components. They are especially useful for applications that require precise axial positioning and handling of thrust loads.

  • Limitations:

Deep Groove Ball Bearings:

Deep groove ball bearings are not as suitable for handling significant axial loads and may experience skidding under certain conditions due to their deep raceways.

Angular Contact Ball Bearings:

Angular contact ball bearings can experience increased heat generation and wear at higher speeds due to the contact angle of the balls.

In summary, the design, load-carrying capacity, contact angle, and applications differ between deep groove ball bearings and angular contact ball bearings. Choosing the appropriate type depends on the specific load conditions and requirements of the application.

ball bearing

What Factors should be Considered when Selecting a Ball Bearing for a Particular Application?

Selecting the right ball bearing for a specific application involves careful consideration of various factors to ensure optimal performance, longevity, and reliability. Here are the key factors that should be taken into account:

  • Load Type and Magnitude:

Determine the type of load (radial, axial, or combined) and the magnitude of the load that the bearing will need to support. Choose a bearing with the appropriate load-carrying capacity to ensure reliable operation.

  • Speed and Operating Conditions:

Consider the rotational speed of the application and the operating conditions, such as temperature, humidity, and exposure to contaminants. Different bearing types and materials are suited for varying speeds and environments.

  • Accuracy and Precision:

For applications requiring high accuracy and precision, such as machine tool spindles or optical instruments, choose high-precision bearings that can maintain tight tolerances and minimize runout.

  • Space Limitations:

If the application has limited space, choose miniature or compact ball bearings that can fit within the available dimensions without compromising performance.

  • Thrust and Radial Loads:

Determine whether the application requires predominantly thrust or radial load support. Choose the appropriate type of ball bearing (thrust, radial, or angular contact) based on the primary load direction.

  • Alignment and Misalignment:

If the application experiences misalignment between the shaft and housing, consider self-aligning ball bearings that can accommodate angular misalignment.

  • Mounting and Installation:

Consider the ease of mounting and dismounting the bearing. Some applications may benefit from features like flanges or snap rings for secure installation.

  • Lubrication and Maintenance:

Choose a bearing with appropriate lubrication options based on the application’s speed and temperature range. Consider whether seals or shields are necessary to protect the bearing from contaminants.

  • Environmental Conditions:

Factor in the operating environment, including exposure to corrosive substances, chemicals, water, or dust. Choose materials and coatings that can withstand the specific environmental challenges.

  • Bearing Material:

Select a bearing material that suits the application’s requirements. Common materials include stainless steel for corrosion resistance and high-carbon chrome steel for general applications.

  • Bearing Arrangement:

Consider whether a single-row, double-row, or multiple bearings in a specific arrangement are needed to accommodate the loads and moments present in the application.

By carefully evaluating these factors, engineers and designers can choose the most suitable ball bearing that aligns with the specific demands of the application, ensuring optimal performance, durability, and overall operational efficiency.

China supplier Single Row Deep Groove Ball Bearing 62 Series (6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210) Manufacturer   with Great qualityChina supplier Single Row Deep Groove Ball Bearing 62 Series (6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210) Manufacturer   with Great quality
editor by CX 2024-04-25

China factory Low Noise Precision 6205zz Ball Bearing Single Row Stainless Steel Bearing drive shaft bearing

Product Description

Low Noise Precision 6205zz Ball Bearing Single Row Stainless Steel Bearing

 

Product Description

 

Detailed Photos

 

 

Installation Instructions

 

 

Product Parameters

 

Item Name Bearing 
Item Model Bearing for Industrial Machinery , Motorcycle , Automobiles , Power Tools and Mechanical Equipment
Material  Chrom Steel /  Bearing Steel
Specification  High Tempearture , High Speed , High Performance , Low Noise 
Sealed Metal ,  Plastic 
Metal Plating Chrom 
Metal Engraving Customized
Packing 10pcs/ tube packing or Box packing
Carton 4pcs spark plugs per day.
Q3: How about your delivery time ?
A3: Delivery time is 20days after you confirmed order.
Q4: What is the benefit for the exclusive agency?
A4: 1.Market Protection
2.Special price or discount in some months
3.Priority delivery
4.Free promotion materials:T-shirt
Q7:Can you produce bearing with our sample?
A7:Yes ,we can.and we will make new CZPT according to your samples.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Separated: Separated
Rows Number: Double
Material: Bearing Steel
Item Name: Premium Ball Bearing
Item Model: Zz RS Series Ball Bearing
Bearing Material: Ball Bearing Steel / Stainless Steel /Carbon Steel
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

How does Preload Affect the Performance and Efficiency of Ball Bearings?

Preload is a crucial factor in ball bearing design that significantly impacts the performance, efficiency, and overall behavior of the bearings in various applications. Preload refers to the intentional axial force applied to the bearing’s rolling elements before it is mounted. This force eliminates internal clearance and creates contact between the rolling elements and the raceways. Here’s how preload affects ball bearing performance:

  • Reduction of Internal Clearance:

Applying preload reduces the internal clearance between the rolling elements and the raceways. This eliminates play within the bearing, ensuring that the rolling elements are in constant contact with the raceways. This reduced internal clearance enhances precision and reduces vibrations during operation.

  • Increased Stiffness:

Preloaded bearings are stiffer due to the elimination of internal clearance. This increased stiffness improves the bearing’s ability to handle axial and radial loads with higher accuracy and minimal deflection.

  • Minimized Axial Play:

Preload minimizes or eliminates axial play within the bearing. This is especially important in applications where axial movement needs to be minimized, such as machine tool spindles and precision instruments.

  • Enhanced Rigidity:

The stiffness resulting from preload enhances the bearing’s rigidity, making it less susceptible to deformation under load. This is critical for maintaining precision and accuracy in applications that require minimal deflection.

  • Reduction in Ball Slippage:

Preload reduces the likelihood of ball slippage within the bearing, ensuring consistent contact between the rolling elements and the raceways. This leads to improved efficiency and better load distribution.

  • Improved Running Accuracy:

Preloading enhances the running accuracy of the bearing, ensuring that it maintains precise rotational characteristics even under varying loads and speeds. This is essential for applications requiring high accuracy and repeatability.

  • Optimized Performance at High Speeds:

Preload helps prevent skidding and slipping of the rolling elements during high-speed operation. This ensures that the bearing remains stable, reducing the risk of noise, vibration, and premature wear.

  • Impact on Friction and Heat Generation:

While preload reduces internal clearance and friction, excessive preload can lead to higher friction and increased heat generation. A balance must be struck between optimal preload and minimizing friction-related issues.

  • Application-Specific Considerations:

The appropriate amount of preload depends on the application’s requirements, such as load, speed, accuracy, and operating conditions. Over-preloading can lead to increased stress and premature bearing failure, while under-preloading may result in inadequate rigidity and reduced performance.

Overall, preload plays a critical role in optimizing the performance, accuracy, and efficiency of ball bearings. Engineers must carefully determine the right preload level for their specific applications to achieve the desired performance characteristics and avoid potential issues related to overloading or inadequate rigidity.

ball bearing

What Precautions should be taken to Prevent Contamination of Ball Bearings in Industrial Settings?

Preventing contamination of ball bearings is essential to ensure their proper function, longevity, and overall performance in industrial settings. Contaminants such as dust, dirt, debris, and particles can significantly impact bearing operation. Here are important precautions to take to prevent contamination of ball bearings:

  • Effective Sealing:

Choose ball bearings with appropriate seals or shields to prevent the ingress of contaminants. Seals provide a physical barrier against dust, moisture, and particles, ensuring the bearing’s interior remains clean.

  • Clean Environment:

Maintain a clean working environment around the machinery and equipment. Regularly clean the surrounding areas to prevent the accumulation of dirt and debris that could enter the bearings.

  • Proper Handling:

Handle bearings with clean hands and use gloves if necessary. Avoid touching the bearing surfaces with bare hands, as natural skin oils can transfer contaminants onto the bearing.

  • Clean Tools and Equipment:

Use clean tools and equipment during installation and maintenance to prevent introducing contaminants. Ensure that tools are properly cleaned before coming into contact with the bearing components.

  • Contamination-Controlled Workstations:

Establish contamination-controlled workstations for bearing handling, installation, and maintenance. These areas should have proper ventilation, filtered air, and minimal exposure to external contaminants.

  • Proper Lubrication:

Use the correct lubricant in appropriate quantities. Lubricants help create a barrier against contaminants and reduce friction. Regularly inspect and replenish lubrication to maintain its effectiveness.

  • Regular Inspections:

Implement a routine inspection schedule to monitor the condition of the bearings. Look for signs of contamination, wear, and damage. Address any issues promptly to prevent further damage.

  • Training and Education:

Train personnel on proper handling, installation, and maintenance practices to minimize the risk of contamination. Educated employees are more likely to take precautions and prevent accidental contamination.

  • Environmental Controls:

In sensitive environments, such as clean rooms or medical facilities, implement strict environmental controls to minimize the presence of contaminants that could affect bearing performance.

  • Regular Cleaning and Maintenance:

Perform regular cleaning and maintenance of machinery and equipment to prevent the buildup of contaminants. Keep bearings protected during maintenance to prevent debris from entering during the process.

  • Selection of Suitable Bearings:

Choose bearings that are specifically designed for the application’s environmental conditions. Some bearings have advanced sealing options or specialized coatings that enhance contamination resistance.

By implementing these precautions, industries can significantly reduce the risk of contamination in ball bearings, ensuring smooth operation, extended bearing life, and enhanced equipment reliability.

ball bearing

How do Ball Bearings Differ from Other Types of Bearings like Roller Bearings?

Ball bearings and roller bearings are two common types of rolling-element bearings, each with distinct designs and characteristics. Here’s a comparison of ball bearings and roller bearings:

  • Design:

Ball Bearings: Ball bearings use spherical balls to separate and reduce friction between the bearing’s inner and outer rings. The balls enable rolling motion and smooth contact, minimizing friction.

Roller Bearings: Roller bearings, as the name suggests, use cylindrical or tapered rollers instead of balls. These rollers have larger contact areas, distributing loads over a broader surface.

  • Friction and Efficiency:

Ball Bearings: Due to the point contact between the balls and the rings, ball bearings have lower friction and are more efficient at high speeds.

Roller Bearings: Roller bearings have a larger contact area, resulting in slightly higher friction compared to ball bearings. They are more suitable for heavy-load applications where efficiency is prioritized over high speeds.

  • Load Capacity:

Ball Bearings: Ball bearings excel at handling light to moderate loads in both radial and axial directions. They are commonly used in applications where smooth rotation and low friction are important.

Roller Bearings: Roller bearings have a higher load-carrying capacity than ball bearings. They can support heavier radial and axial loads and are preferred for applications with significant loads or impact forces.

  • Variability:

Ball Bearings: Ball bearings come in various designs, including deep groove, angular contact, and thrust ball bearings, each suitable for different applications.

Roller Bearings: Roller bearings have diverse types, including cylindrical, spherical, tapered, and needle roller bearings, each optimized for specific load and motion requirements.

  • Speed Capability:

Ball Bearings: The reduced friction in ball bearings makes them suitable for high-speed applications, such as electric motors and precision machinery.

Roller Bearings: Roller bearings can handle higher loads but are generally better suited for moderate to low speeds due to slightly higher friction.

  • Applications:

Ball Bearings: Ball bearings are used in applications where smooth motion, low friction, and moderate loads are essential, such as electric fans, bicycles, and some automotive components.

Roller Bearings: Roller bearings find applications in heavy machinery, construction equipment, automotive transmissions, and conveyor systems, where heavier loads and durability are crucial.

In summary, ball bearings and roller bearings differ in their design, friction characteristics, load capacities, speed capabilities, and applications. The choice between them depends on the specific requirements of the machinery and the type of loads and forces involved.

China factory Low Noise Precision 6205zz Ball Bearing Single Row Stainless Steel Bearing   drive shaft bearingChina factory Low Noise Precision 6205zz Ball Bearing Single Row Stainless Steel Bearing   drive shaft bearing
editor by CX 2024-04-25

China Standard 6907/25 Ball Bearing 6308/25 255510 6907/3yd 09262-25137 Open Deep Groove Ball Bearings Single Row Bearing bearing driver kit

Product Description

Detailed Photos

Product Description

Bearing Detail
Item No. 6907/25   Deep Groove Ball Bearing 25x55x10mm 25x55x10
6907/25  Ball Bearing 6308/25 255510 6907/3YD 09262-25137 Open Deep Groove Ball Bearings Single Row Bearing
Bearing Type Deep groove ball bearing
Seals Type: Open, ZZ, 2RS
Material Chrome steel GCr15
Precision P0,P2,P5,P6,P4
Clearance C0,C2,C3,C4,C5
Cage type Brass, steel, nylon, etc.
Ball Bearings Feature Long-life with high quality
Low-noise with strict controlling the quality of HJR bearing
High-load by the advanced high-technical design
Competitive price, which has the most valuable
OEM service offered, to meet the customers requirements
Application mill rolling mill rolls, crusher, vibrating screen, printing machinery, woodworking machinery, all kinds of industry
Bearing Package Pallet,wooden case,commercial packaging or as customers’ requirement

Packaging & Delivery:
Packaging Details Standard exporting packing or according to the customer’s requirements
Package Type: A. Plastic tubes Pack + Carton + Wooden Pallet
  B. Roll Pack + Carton + Wooden Pallet
  C. Individual Box +Plastic bag+ Carton + Wooden Palle

Lead Time :
Quantity(Pieces) 1 – 3/8822 0571 *56*15 SX05A87 25*52*15 62/28/CS31 28*58*13
SC05C59 26*58*14 SC05A61 26*58*15 QJ210LB,QJ3565EZV.QJ109EZV,BR1934 F-845874 (19.05*34.15*6.35)
R6 R8 R10  RLS6 RLS10 RLS12 RLS14 RLS20 RLS24 RLS26 RLS48 RLS56 ,
RMS4 RMS6 RMS8 RMS9 RMS10 RMS14 1180304.1180305.450706.450907. 411802.83549c3.AB42421.LR2.LR201 LR203 LR204 

Our Advantages

SOLUTION
– At the beginning, we will have a communication with our customers on their demand, then our  engineers will work out an optimum solution based on the customers’ demand and condition.
QUALITY CONTROL (Q/C)
– In accordance with ISO standards, we have professional Q/C staff, precision testing instruments and internal inspection system, the quality control is implemented in every process from material receiving to products packaging to ensure our bearings quality.
PACKAGE
– Standardized export packing and environment-protected packing material are used for our bearings, the custom boxes, labels, barcodes etc. can also be provided according to our customer’s request.
LOGISTIC
– Normally, our bearings will be sent to the customers by CZPT transportation due to its heavy weight, airfreight, express is also available if our customers need.
WARRANTY
– We warrant our bearings to be free from defects in material and workmanship for a 12 months period from the shipping date, this warranty is voided by non-recommended use, improper installation or physical damage.

FAQ

Q: What’s your after-sales service and warranty?
A: We promise to bear the following responsibility when defective product is found:
1.12 months warranty from the first day of receiving goods;
2.Replacements would be sent with goods of your next order;
3.Refund for defective products if customers require.
Q: Do you accept ODM&OEM orders?
A: Yes, we provide ODM&OEM services to worldwide customers, we are CZPT to customize housings in different styles, and sizes in different brands, we also customize circuit board & packaging box as per your requirements.
Q: What’s the MOQ?
A: MOQ is 10pcs for standardized products; for customized products, MOQ should be negotiated in advance. There is no MOQ for sample orders.
Q: How long is the lead time?
A: The lead time for sample orders is 3-5 days, for bulk orders is 5-15 days.
Q: How to place orders?
A: 1. Email us the model, brand and quantity, consignee information, shipping way and payment terms;
2.Proforma Invoice made and sent to you;
3.Complete Payment after confirming the PI;
4.Confirm Payment and arrange production.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Stock: Large Stock
OEM Quality: OE-Matching Quality
Performance: High Performance
Samples:
US$ 1/Set
1 Set(Min.Order)

|

Order Sample

high quality ,low noise
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

ball bearing

How does Preload Affect the Performance and Efficiency of Ball Bearings?

Preload is a crucial factor in ball bearing design that significantly impacts the performance, efficiency, and overall behavior of the bearings in various applications. Preload refers to the intentional axial force applied to the bearing’s rolling elements before it is mounted. This force eliminates internal clearance and creates contact between the rolling elements and the raceways. Here’s how preload affects ball bearing performance:

  • Reduction of Internal Clearance:

Applying preload reduces the internal clearance between the rolling elements and the raceways. This eliminates play within the bearing, ensuring that the rolling elements are in constant contact with the raceways. This reduced internal clearance enhances precision and reduces vibrations during operation.

  • Increased Stiffness:

Preloaded bearings are stiffer due to the elimination of internal clearance. This increased stiffness improves the bearing’s ability to handle axial and radial loads with higher accuracy and minimal deflection.

  • Minimized Axial Play:

Preload minimizes or eliminates axial play within the bearing. This is especially important in applications where axial movement needs to be minimized, such as machine tool spindles and precision instruments.

  • Enhanced Rigidity:

The stiffness resulting from preload enhances the bearing’s rigidity, making it less susceptible to deformation under load. This is critical for maintaining precision and accuracy in applications that require minimal deflection.

  • Reduction in Ball Slippage:

Preload reduces the likelihood of ball slippage within the bearing, ensuring consistent contact between the rolling elements and the raceways. This leads to improved efficiency and better load distribution.

  • Improved Running Accuracy:

Preloading enhances the running accuracy of the bearing, ensuring that it maintains precise rotational characteristics even under varying loads and speeds. This is essential for applications requiring high accuracy and repeatability.

  • Optimized Performance at High Speeds:

Preload helps prevent skidding and slipping of the rolling elements during high-speed operation. This ensures that the bearing remains stable, reducing the risk of noise, vibration, and premature wear.

  • Impact on Friction and Heat Generation:

While preload reduces internal clearance and friction, excessive preload can lead to higher friction and increased heat generation. A balance must be struck between optimal preload and minimizing friction-related issues.

  • Application-Specific Considerations:

The appropriate amount of preload depends on the application’s requirements, such as load, speed, accuracy, and operating conditions. Over-preloading can lead to increased stress and premature bearing failure, while under-preloading may result in inadequate rigidity and reduced performance.

Overall, preload plays a critical role in optimizing the performance, accuracy, and efficiency of ball bearings. Engineers must carefully determine the right preload level for their specific applications to achieve the desired performance characteristics and avoid potential issues related to overloading or inadequate rigidity.

ball bearing

What Precautions should be taken to Prevent Contamination of Ball Bearings in Industrial Settings?

Preventing contamination of ball bearings is essential to ensure their proper function, longevity, and overall performance in industrial settings. Contaminants such as dust, dirt, debris, and particles can significantly impact bearing operation. Here are important precautions to take to prevent contamination of ball bearings:

  • Effective Sealing:

Choose ball bearings with appropriate seals or shields to prevent the ingress of contaminants. Seals provide a physical barrier against dust, moisture, and particles, ensuring the bearing’s interior remains clean.

  • Clean Environment:

Maintain a clean working environment around the machinery and equipment. Regularly clean the surrounding areas to prevent the accumulation of dirt and debris that could enter the bearings.

  • Proper Handling:

Handle bearings with clean hands and use gloves if necessary. Avoid touching the bearing surfaces with bare hands, as natural skin oils can transfer contaminants onto the bearing.

  • Clean Tools and Equipment:

Use clean tools and equipment during installation and maintenance to prevent introducing contaminants. Ensure that tools are properly cleaned before coming into contact with the bearing components.

  • Contamination-Controlled Workstations:

Establish contamination-controlled workstations for bearing handling, installation, and maintenance. These areas should have proper ventilation, filtered air, and minimal exposure to external contaminants.

  • Proper Lubrication:

Use the correct lubricant in appropriate quantities. Lubricants help create a barrier against contaminants and reduce friction. Regularly inspect and replenish lubrication to maintain its effectiveness.

  • Regular Inspections:

Implement a routine inspection schedule to monitor the condition of the bearings. Look for signs of contamination, wear, and damage. Address any issues promptly to prevent further damage.

  • Training and Education:

Train personnel on proper handling, installation, and maintenance practices to minimize the risk of contamination. Educated employees are more likely to take precautions and prevent accidental contamination.

  • Environmental Controls:

In sensitive environments, such as clean rooms or medical facilities, implement strict environmental controls to minimize the presence of contaminants that could affect bearing performance.

  • Regular Cleaning and Maintenance:

Perform regular cleaning and maintenance of machinery and equipment to prevent the buildup of contaminants. Keep bearings protected during maintenance to prevent debris from entering during the process.

  • Selection of Suitable Bearings:

Choose bearings that are specifically designed for the application’s environmental conditions. Some bearings have advanced sealing options or specialized coatings that enhance contamination resistance.

By implementing these precautions, industries can significantly reduce the risk of contamination in ball bearings, ensuring smooth operation, extended bearing life, and enhanced equipment reliability.

ball bearing

How do Ball Bearings Differ from Other Types of Bearings like Roller Bearings?

Ball bearings and roller bearings are two common types of rolling-element bearings, each with distinct designs and characteristics. Here’s a comparison of ball bearings and roller bearings:

  • Design:

Ball Bearings: Ball bearings use spherical balls to separate and reduce friction between the bearing’s inner and outer rings. The balls enable rolling motion and smooth contact, minimizing friction.

Roller Bearings: Roller bearings, as the name suggests, use cylindrical or tapered rollers instead of balls. These rollers have larger contact areas, distributing loads over a broader surface.

  • Friction and Efficiency:

Ball Bearings: Due to the point contact between the balls and the rings, ball bearings have lower friction and are more efficient at high speeds.

Roller Bearings: Roller bearings have a larger contact area, resulting in slightly higher friction compared to ball bearings. They are more suitable for heavy-load applications where efficiency is prioritized over high speeds.

  • Load Capacity:

Ball Bearings: Ball bearings excel at handling light to moderate loads in both radial and axial directions. They are commonly used in applications where smooth rotation and low friction are important.

Roller Bearings: Roller bearings have a higher load-carrying capacity than ball bearings. They can support heavier radial and axial loads and are preferred for applications with significant loads or impact forces.

  • Variability:

Ball Bearings: Ball bearings come in various designs, including deep groove, angular contact, and thrust ball bearings, each suitable for different applications.

Roller Bearings: Roller bearings have diverse types, including cylindrical, spherical, tapered, and needle roller bearings, each optimized for specific load and motion requirements.

  • Speed Capability:

Ball Bearings: The reduced friction in ball bearings makes them suitable for high-speed applications, such as electric motors and precision machinery.

Roller Bearings: Roller bearings can handle higher loads but are generally better suited for moderate to low speeds due to slightly higher friction.

  • Applications:

Ball Bearings: Ball bearings are used in applications where smooth motion, low friction, and moderate loads are essential, such as electric fans, bicycles, and some automotive components.

Roller Bearings: Roller bearings find applications in heavy machinery, construction equipment, automotive transmissions, and conveyor systems, where heavier loads and durability are crucial.

In summary, ball bearings and roller bearings differ in their design, friction characteristics, load capacities, speed capabilities, and applications. The choice between them depends on the specific requirements of the machinery and the type of loads and forces involved.

China Standard 6907/25 Ball Bearing 6308/25 255510 6907/3yd 09262-25137 Open Deep Groove Ball Bearings Single Row Bearing   bearing driver kitChina Standard 6907/25 Ball Bearing 6308/25 255510 6907/3yd 09262-25137 Open Deep Groove Ball Bearings Single Row Bearing   bearing driver kit
editor by CX 2024-04-22

China supplier Single Row Miniature Ball Bearings with AISI440c for Fishing Equipment drive shaft bearing

Product Description

Type No. Metric Type Bore Size: 1.50mm up to 12mm
Inch Type Bore Size: 0.0781″ up to 0.75″ 
Flanged Metric Type Bore Size: 1.50mm up to 12mm
Flanged Inch Type Bore Size: 0.0781″ up to 0.75″ 
Materials Inner/Outer Race AISI440C, AISI420
Balls AISI440C, AISI420, Si3N4 Ceramic
Retainer Rivet Cage, Crown Cage, Nylon Cage
Seals/Shields ZZ, ZZS, TTS, 2RS, 2RU
Precision ABEC-1, ABEC-3, ABEC-5, ABEC-7
Vibration & Noise Z1, Z1V1, Z2V1, Z2V2, Z3V3
Lubrication SRL,PS2, B325, SRI#2,  M28, Oil Lube, Dried, etc..

We mainly focuses on stainless steel small-sized ball bearings with full ranges. We’re especially good at the production of Extra-thin bearings, Bearings with flange, Hybrid Ceramic ball bearings, Non-standard bearings and Bearings with Teflon seals.

After decade of experiences to understand bearings and the needs of our clients, we spent much time and achieved enough capability for customized bearings, and continuously develop brilliant solutions for end-users. 

Applications: 
1). fishing equipments
2). hobby models
3). remote radio control products
4). power transmissions
5). medical instruments
6). office appliances, and more…

Q1: Can I get a free sample?
A1: We provide samples free in freight collected. For special samples requirement, please contact us for more details. 
Q2: How could I pay?
A2: We prefer T/T or L/C at sight. If you prefer other payment terms, please contact us freely.
Q3: What is your brand and packing way? Can you produce my brand and packing?
A3: Our brand is SGC and our own packing materials. We can make your brand. For more details, please contact us.
Q4: What is the delivery lead time?
A4: It depends on the order quantities. The mass production lead time is about 45-60 days after receipt of the deposit. 
Q5: Are you manufacturer or  trading company?
A5: We are manufacturer and exporter. We provide all kinds of OEM services for clients around the world.
Q6: Where is your main market?
A6: We export to the North America, Mexico, Australia, South-east Asia, Europe, U.A.E., Turkey, and other countries.

Our Services
1. Professional QC and QA team to make sure all products qualified before shipping.
2. Competitive price.
3 .Standard package to ensure the safe transportation.
4. Professional service.

Why choose us?
1. Production
    Qualified production, competitive price, professional service. 
2. Quality
    All products are inspected 100% before shipment by relative testing equipments.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Radial Bearing
Material: Stainless Steel
Materials: AISI440c, AISI420, Si3n4
Samples:
US$ 0/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

What are the Materials Typically Used in Manufacturing Ball Bearings and Their Advantages?

Ball bearings are manufactured using a variety of materials, each chosen for its specific properties and advantages in various applications. Here are some commonly used materials in ball bearing manufacturing and their respective benefits:

  • High-Carbon Chrome Steel (AISI 52100):

This is the most common material used for ball bearing manufacturing. It offers excellent hardness, wear resistance, and fatigue strength. High-carbon chrome steel bearings are suitable for a wide range of applications, from industrial machinery to automotive components.

  • Stainless Steel (AISI 440C, AISI 304, AISI 316):

Stainless steel bearings are corrosion-resistant and suitable for applications where moisture, chemicals, or exposure to harsh environments are concerns. AISI 440C offers high hardness and corrosion resistance, while AISI 304 and AISI 316 provide good corrosion resistance and are often used in food and medical industries.

  • Ceramic:

Ceramic bearings use silicon nitride (Si3N4) or zirconia (ZrO2) balls. Ceramic materials offer high stiffness, low density, and excellent resistance to corrosion and heat. Ceramic bearings are commonly used in high-speed and high-temperature applications, such as in aerospace and racing industries.

  • Plastic (Polyamide, PEEK):

Plastic bearings are lightweight and offer good corrosion resistance. Polyamide bearings are commonly used due to their low friction and wear properties. Polyether ether ketone (PEEK) bearings provide high-temperature resistance and are suitable for demanding environments.

  • Bronze:

Bronze bearings are often used in applications where self-lubrication is required. Bronze has good thermal conductivity and wear resistance. Bearings made from bronze are commonly used in machinery requiring frequent starts and stops.

  • Hybrid Bearings:

Hybrid bearings combine steel rings with ceramic balls. These bearings offer a balance between the advantages of both materials, such as improved stiffness and reduced weight. Hybrid bearings are used in applications where high speeds and low friction are essential.

  • Specialty Alloys:

For specific applications, specialty alloys may be used to meet unique requirements. For example, bearings used in extreme temperatures or corrosive environments may be made from materials like titanium or hastelloy.

  • Coated Bearings:

Bearings may also be coated with thin layers of materials like diamond-like carbon (DLC) or other coatings to enhance performance, reduce friction, and improve wear resistance.

The choice of material depends on factors such as application requirements, operating conditions, load, speed, and environmental factors. Selecting the right material is essential for ensuring optimal bearing performance, longevity, and reliability in diverse industries and applications.

ball bearing

Are there any Industry Standards or Certifications that Ball Bearings should Meet?

Yes, there are several industry standards and certifications that ball bearings should meet to ensure their quality, performance, and reliability. These standards help manufacturers, engineers, and customers assess the suitability of bearings for specific applications. Some of the key standards and certifications for ball bearings include:

  • ISO Standards:

The International Organization for Standardization (ISO) has developed a series of standards related to ball bearings. ISO 15 defines dimensions, boundary dimensions, and tolerances for radial bearings. ISO 281 specifies dynamic load ratings and calculation methods for bearings’ life calculations.

  • ABEC (Annular Bearing Engineering Committee) Ratings:

ABEC ratings are commonly used in North America to indicate the precision and performance of ball bearings. Ratings range from ABEC 1 (lowest precision) to ABEC 9 (highest precision). However, it’s important to note that ABEC ratings focus primarily on dimensional tolerances and do not encompass all aspects of bearing quality.

  • DIN Standards:

The German Institute for Standardization (Deutsches Institut für Normung, DIN) has published various standards related to ball bearings. DIN 625 covers dimensions for deep groove ball bearings, while DIN 616 provides guidelines for precision angular contact ball bearings.

  • JIS (Japanese Industrial Standards):

JIS standards are used in Japan and internationally to define the characteristics and dimensions of various products, including ball bearings. JIS B 1512 outlines the classification and dimensions of rolling bearings.

  • ASTM (American Society for Testing and Materials) Standards:

ASTM has standards that cover various aspects of bearing testing, performance, and materials. ASTM F2215, for instance, specifies the requirements for ball bearings used in surgical implants.

  • CE Marking:

CE marking indicates that a product complies with European Union health, safety, and environmental requirements. It may be required for bearings used in machinery intended to be sold within the EU market.

  • Industry-Specific Standards:

Various industries, such as aerospace, automotive, medical, and nuclear, have specific standards or certifications that bearings must meet to ensure safety, reliability, and compliance with industry-specific requirements.

  • Quality Management Systems:

Manufacturers that adhere to quality management systems, such as ISO 9001, demonstrate their commitment to consistent product quality and customer satisfaction. Certification to these systems indicates that the manufacturing process follows established protocols and best practices.

When selecting ball bearings, it’s important to consider the relevant standards and certifications that align with the application’s requirements. This ensures that the bearings meet recognized quality and performance criteria, ultimately contributing to reliable and efficient operation.

ball bearing

What Factors should be Considered when Selecting a Ball Bearing for a Particular Application?

Selecting the right ball bearing for a specific application involves careful consideration of various factors to ensure optimal performance, longevity, and reliability. Here are the key factors that should be taken into account:

  • Load Type and Magnitude:

Determine the type of load (radial, axial, or combined) and the magnitude of the load that the bearing will need to support. Choose a bearing with the appropriate load-carrying capacity to ensure reliable operation.

  • Speed and Operating Conditions:

Consider the rotational speed of the application and the operating conditions, such as temperature, humidity, and exposure to contaminants. Different bearing types and materials are suited for varying speeds and environments.

  • Accuracy and Precision:

For applications requiring high accuracy and precision, such as machine tool spindles or optical instruments, choose high-precision bearings that can maintain tight tolerances and minimize runout.

  • Space Limitations:

If the application has limited space, choose miniature or compact ball bearings that can fit within the available dimensions without compromising performance.

  • Thrust and Radial Loads:

Determine whether the application requires predominantly thrust or radial load support. Choose the appropriate type of ball bearing (thrust, radial, or angular contact) based on the primary load direction.

  • Alignment and Misalignment:

If the application experiences misalignment between the shaft and housing, consider self-aligning ball bearings that can accommodate angular misalignment.

  • Mounting and Installation:

Consider the ease of mounting and dismounting the bearing. Some applications may benefit from features like flanges or snap rings for secure installation.

  • Lubrication and Maintenance:

Choose a bearing with appropriate lubrication options based on the application’s speed and temperature range. Consider whether seals or shields are necessary to protect the bearing from contaminants.

  • Environmental Conditions:

Factor in the operating environment, including exposure to corrosive substances, chemicals, water, or dust. Choose materials and coatings that can withstand the specific environmental challenges.

  • Bearing Material:

Select a bearing material that suits the application’s requirements. Common materials include stainless steel for corrosion resistance and high-carbon chrome steel for general applications.

  • Bearing Arrangement:

Consider whether a single-row, double-row, or multiple bearings in a specific arrangement are needed to accommodate the loads and moments present in the application.

By carefully evaluating these factors, engineers and designers can choose the most suitable ball bearing that aligns with the specific demands of the application, ensuring optimal performance, durability, and overall operational efficiency.

China supplier Single Row Miniature Ball Bearings with AISI440c for Fishing Equipment   drive shaft bearingChina supplier Single Row Miniature Ball Bearings with AISI440c for Fishing Equipment   drive shaft bearing
editor by CX 2024-04-04

China wholesaler Radial Rulman Gcr15 SUS440 95cr18 SUS420 7200 7201 7202 7203 7204 7205 7206 2RS Zz Bm B AC C Precision Single Row / Double Row Angular Contact Ball Bearings. bearing block

Product Description

PRODUCT PICTURES


  OUR SERVICES

We can provide manufacturing capabilities and services of regular bearings for you, or customized non-standard bearings as you required.

 BEARING:
  — Dimensions
  — Material
  — Tolerance standard

APPEARANCE:
  — Logo (Laser Marking)
  — Package Design

40+ YEARS EXPERIENCE 
CONTINUOUS AND STABLE DELIVERY OF PRODUCTS.

With over 40 years experience of the bearing manufacturing, we know how to make good bearings with less cost consistently and efficiently.

We use advanced CNC turning, grinding, and superfinishing machines to ensure high, stable, and accurate machining.  All of your goods, from the most economical category, to the highest rated category, will always be manufactured precisely to the standards you require.

OWN HEAT TREATMENT 
CONTROALLABLE COST AND QUALITY.

Heat treatment is 1 of the crucial processes to ensure high performance of bearing materials. Compared with other manufacturers, we can produce higher quality bearings at smaller cost, with a more flexible and controllable production schedule, and in a shorter time

We have 6 heat treatment production lines.

Bearings are heated uniformly, with small deformation and little/no oxidized decarburization, which can make them have high hardness, high fatigue resistance, good wear resistance, dimensional stability, and excellent mechanical strength.
 

OUTSTXIHU (WEST LAKE) DIS.  QUALITY
LOW NOISE, LOW FRICTION AND LONG LIFE.

All our products are characterized by low noise, low friction and long life.  This is due to our attention to the roundness, waviness and surface roughness of bearing raceway.

Our products fully meets the requirements of national and international standards accoding to the testing result of
roughness, roundness, hardness, vibration noise, vibration velocity.

PACKING
PACKAGING THAT HELPS SELL.

1, Inner package
   Corrosion and Dust Proof PE plastic film  / bag packing + Tube packing, or Wrapping  tape for larger bearings.

2, Corrugated Individual Box
   Our attractive sales-helpful “3-JOYS” package, or as the design of your package.
3, Outer package
  Corrugated carton + Wooden pallet 

MODERN WELL-ORGANIZED WAREHOUSE

  · Constant temperature (20°C) and humidity (RH 52%) warehouse
  · Hundreds of models on hand, short delivery time.
 

HONOR & SYSTEM CERTIFICATES

EXHIBITION

SAMPLES POLICY 

 FREE SAMPLES AND SHIPPING

 We are happy to send you free samples of our bearings for field   testing. All transportation costs will be paid by us.

 Please note: Depending on the model and value of samples,   this policy may not apply!

 Please contact our sales staff for details.

TRANSPORTATION
FASTEST DELIVERY TO CUSTOMERS

CUSTOMERS FEEDBACK

PAYMENT TERMS 
To facilitate your payment, we offer a variety of options! 

    
 

FAQ

1, About the lead time.
 
This depends on several factors, like Is the production schedule tight? Is there a corresponding model in stock, and is there enough of this model in stock? How many pcs of that model would be ordered?
Simply speaking, based on a 20′ GP container load:

If the model your Preferred is Sufficient stock Lead Time
Regular models YES Within 7 days
Regular models NO Within 30 days
Non-regular model NO About 50 days

For accurate estimate, please contact with our sale stuff. Thanks.

2, Minimum order quantity. 
  

Even just ONE piece of bearing is ok for us.

  
3, If you don’t know which model is the right choice…
  

We would like to give you some advise if you like, according to the real situation and demand of your local market. Our purpose is to help you to get proper and right models for your customers, so that you would make a better sales and income finally.

4, Factory Inspection

We surely would welcome you or your representatives to come to our plants or working offices to take a good look and chat with our hardworking CZPT employees. Ask our sales stuff and she/he will arrange that for you.

OPTIONS OF SPECIFICATION AND STHangZhouRD
 

Subject Symbol Description
Sealing & Sealing type Z Metal shield on 1 side.
ZZ Metal shields on both sides.
RS Rubber seal on 1 side.
2RS Rubber seals on both sides.
ZNR Shield on 1 side, snap ring groove in the outer ring, with snap ring on the opposite side of the shield
2ZNR Shield on both sides, snap ring groove in the outer ring, with snap ring
ZNBR Shield on 1 side, snap ring groove in the outer ring, with snap ring on the same side as the shield
Cage Materials J Pressed steel cages
M Solid brass cage
F Solid cage made from steel or iron
Y Pressed brass cages.
T Laminated phenolic cages.
TN Polyamide cages
TH Glass-fiber reinforced phenolic resin cages.
TV Polyamide cage
Cage Designs P Window-type cage
H Claw-type cage
A Cage guided on the bearing outer ring
B Cage-guided on the bearing inner ring
S Cage with lubricating slots in the guiding surfaces
D Carbonitriding cage
W Welded cage
R Riveted Cage
Cage Types N/A Claw-type cage
Ribbon cage
Crown cage
Sunflower cage
Tapered cage
Tolerances PN(P0) Bearings in standard tolerance
P6 Tighter tolerance than standard bearings
P5 Tolerance tighter than P6
P4 Tolerance tighter than P5
P2 Tolerance tighter than P4
Contact Angle C Contact angle 15˚.
AC Contact angle 25˚.
CA Contact angle 20˚.
E Contact angle 35˚.
B Contact angle 40˚.
Bearing Sets DB Two bearings: back-to-back.
DF Two bearings: face-to-face.
DT Two bearings: in tandem.
TBT Three bearings: tandem and back-to-back.
TFT Three bearings: tandem and face-to-face.
QFC Four bearings: tandem and face-to-face.
DB Two bearings: back-to-back.
DF Two bearings: face-to-face.

PRODUCT PARAMETERS

This tech sheet may not contain all or every piece of information you want to know. Please contact our sales staff to obtain or compare the information.
 

Designation Boundary Dimension (mm) Limiting Speed (rpm) Load Rating (Kn) Weight
 Designation Inner Diameter
(d)
Outside Diameter
(D)
Width
(B)
Grease Lubrication Oil Lubrication Dynamic Load
(cr)
Static Load
(cor)
Weight
(kg)
7200C 10 30 9 18000 26000 5.81 2.93 0.032
7200AC 10 30 9 18000 26000 5.5 2.85 0.032
7200B 10 30 9 16000 25000 5.3 2.7 0.032
7201C 12 32 10 17000 24000 7.3 3.4 0.039
7201AC 12 32 10 17000 24000 7.09 3.3 0.039
7201B 12 32 10 15000 23000 6.9 3.2 0.039
7202C 15 35 11 16000 22000 8.6 4.5 0.048
7202AC 15 35 11 16000 22000 8.3 4.3 0.048
7202B 15 35 11 15000 21000 7.9 4.2 0.048
7203C 17 40 12 15000 20000 10.8 6.1 0.069
7203AC 17 40 12 15000 20000 10.5 5.6 0.069
7203B 17 40 12 14000 19000 9.9 5.5 0.069
7204C 20 47 14 13000 18000 15.5 8.9 0.110
7204AC 20 47 14 13000 18000 15 8.5 0.110
7204B 20 47 14 12000 16000 13.4 7.6 0.110
7205C 25 52 15 11000 16000 16.5 10 0.130
7205AC 25 52 15 11000 16000 15.8 9.7 0.130
7205B 25 52 15 10000 14000 14.8 9.3 0.130
7206C 30 62 16 9000 13000 23 14.7 0.217
7206AC 30 62 16 9000 13000 22.1 13.5 0.217
7206B 30 62 16 8500 12000 20.5 13.5 0.217
7207C 35 72 17 8000 11000 30.3 20 0.313
7207AC 35 72 17 8000 11000 29.2 18 0.313
7207B 35 72 17 7500 10000 28.3 14.8 0.313
7208C 40 80 18 7500 10000 38.4 26.3 0.402
7208AC 40 80 18 7500 10000 36.8 25.4 0.402
7208B 40 80 18 6700 9000 34.5 23.8 0.402
7209C 45 85 19 6700 9000 40.4 29.3 0.460
7209AC 45 85 19 6700 9000 38.6 28.1 0.460
7209B 45 85 19 6300 8500 34 24.6 0.460
7210C 50 90 20 6300 8500 42.8 31.3 0.510
7210AC 50 90 20 6300 8500 40.8 30.1 0.510
7210B 50 90 20 5600 8000 40.4 25.6 0.510
7211C 55 100 21 5600 7000 53.2 39.9 0.680
7211AC 55 100 21 5600 7000 50.8 38.2 0.680
7211B 55 100 21 5300 7000 46.3 36 0.680
7212C 60 110 22 5300 7000 61 48.2 1.571
7212AC 60 110 22 5300 7000 58.1 46 1.571
7212B 60 110 22 4800 6300 56.1 44.3 1.571
7213C 65 120 23 4800 6300 69.8 54.4 1.090
7213AC 65 120 23 4800 6300 66.6 52.1 1.090
7213B 65 120 23 4300 6000 65.7 50.2 1.090
7214C 70 125 24 4500 5800 72.8 59.7 1.180
7214AC 70 125 24 4500 5800 69.4 57 1.180
7214B 70 125 24 4000 5600 70.4 56.3 1.180
7215C 75 130 25 4300 5600 79.2 65.6 1.320
7215AC 75 130 25 4300 5600 75.3 62.8 1.320
7215B 75 130 25 3800 5300 68.6 58.2 1.320
7216C 80 140 26 4000 5300 92.5 66.2 1.570
7216AC 80 140 26 4000 5300 91.3 65.1 1.570
7216B 80 140 26 4000 5300 78.7 65.7 1.570
7217C 85 150 28 3800 5000 99.7 84.6 2.571
7217AC 85 150 28 3800 5000 94.9 80.8 2.571
7217B 85 150 28 3600 4800 83.2 74.1 2.571
7218C 90 160 30 3600 4800 128 111.7 2.470
7218AC 90 160 30 3600 4800 122 106.5 2.470
7218B 90 160 30 3200 4300 107.6 92.4 2.470
7219C 95 170 32 3400 4500 134.6 112.2 3.571
7219AC 95 170 32 3400 4500 128.4 107.8 3.571
7219B 95 170 32 3000 4000 121.4 106.7 3.571
7220C 100 180 34 3200 4300 148 125 3.620
7220AC 100 180 34 3200 4300 142 120.6 3.620
7220B 100 180 34 2800 3800 140 102.5 3.620
7221C 105 190 36 3000 4000 166.6 138.6 4.290
7221AC 105 190 36 3000 4000 159 135.1 4.290
7221B 105 190 36 2800 3800 143.3 128.5 4.290
7222C 110 200 38 2800 3800 184.7 154.8 5.030
7222AC 110 200 38 2800 3800 176.3 151.2 5.030
7222B 110 200 38 2400 3400 153.8 144.3 5.030
7224C 120 215 40 2400 3400 203.1 178.4 7.080
7224AC 120 215 40 2400 3400 193.6 170.9 7.080
7224B 120 215 40 2200 3200 165.4 161.4 7.080
7226C 130 230 40 2000 3000 206.6 209.2 8.100
7226AC 130 230 40 2000 3000 196.4 200.1 8.100
7226B 130 230 40 1800 2800 170.8 174.2 8.100
7228C 140 250 42 2000 2800 227.2 238.3 9.950
7228AC 140 250 42 2000 2800 216.9 227.4 9.950
7228B 140 250 42 1800 2600 212.2 197.3 9.950
7232AC 160 290 48 1700 2400 250 288 15.49
7234AC 170 310 52 1600 2200 281 341 19.69
7236AC 180 320 52 2200 2700 293 362 20.26
7238AC 190 340 55 2000 2500 303 390 24.31
7240AC 200 360 58 1300 1800 343 449 28.82
7244AC 220 400 65 1100 1600 358 482 33.60
7248AC 240 440 72 1500 1800 403 595 51.8

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 40
Aligning: Aligning Bearing
Separated: Unseparated
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

ball bearing

Can you Provide Examples of Industries where Ball Bearings are Crucial Components?

Ball bearings are essential components in a wide range of industries where smooth motion, load support, and precision are vital. Here are some examples of industries where ball bearings play a crucial role:

  • Automotive Industry:

Ball bearings are used in various automotive applications, including wheel hubs, transmissions, engines, steering systems, and suspension components. They provide reliable rotation and support in both passenger vehicles and commercial vehicles.

  • Aerospace Industry:

In the aerospace sector, ball bearings are found in aircraft engines, landing gear systems, control surfaces, and avionics equipment. Their ability to handle high speeds and precision is vital for aviation safety.

  • Industrial Machinery:

Ball bearings are integral to a wide range of industrial machinery, including pumps, compressors, conveyors, machine tools, printing presses, and textile machinery. They facilitate smooth operation and load distribution in these diverse applications.

  • Medical Equipment:

In medical devices and equipment, ball bearings are used in surgical instruments, imaging equipment, dental tools, and laboratory machinery. Their precision and smooth movement are crucial for accurate diagnostics and treatments.

  • Robotics and Automation:

Ball bearings are key components in robotic arms, automation systems, and manufacturing machinery. They enable precise movement, high-speed operation, and reliable performance in automated processes.

  • Renewable Energy:

Wind turbines and solar tracking systems utilize ball bearings to enable efficient rotation and tracking of the wind blades and solar panels. Ball bearings withstand the dynamic loads and environmental conditions in renewable energy applications.

  • Marine and Shipbuilding:

Ball bearings are used in marine applications such as ship propulsion systems, steering mechanisms, and marine pumps. They withstand the corrosive environment and provide reliable performance in maritime operations.

  • Heavy Equipment and Construction:

In construction machinery like excavators, bulldozers, and cranes, ball bearings support the movement of heavy loads and enable efficient operation in demanding environments.

  • Electronics and Consumer Appliances:

Consumer electronics like electric motors, computer hard drives, and household appliances rely on ball bearings for smooth motion and reliable operation.

  • Oil and Gas Industry:

In oil and gas exploration and extraction equipment, ball bearings are used in drilling rigs, pumps, and processing machinery. They handle the high loads and harsh conditions of this industry.

These examples demonstrate how ball bearings are indispensable components in various industries, contributing to the efficiency, reliability, and functionality of diverse mechanical systems and equipment.

ball bearing

What Role do Seals and Shields Play in Protecting Ball Bearings from Dirt and Debris?

Seals and shields are critical components of ball bearings that play a crucial role in protecting them from dirt, debris, moisture, and contaminants in various applications. These protective features help maintain the integrity of the bearing’s internal components and ensure reliable operation. Here’s how seals and shields contribute to bearing protection:

  • Contaminant Exclusion:

Seals and shields create a physical barrier between the external environment and the bearing’s interior. They prevent dust, dirt, water, and other contaminants from entering the bearing and coming into contact with the rolling elements and raceways.

  • Lubrication Retention:

Seals and shields help retain lubrication within the bearing. They prevent the lubricant from escaping and contaminants from entering, ensuring that the bearing remains properly lubricated for smooth operation and reduced friction.

  • Corrosion Prevention:

Seals and shields protect bearing components from exposure to moisture and corrosive substances. By preventing moisture ingress, they help extend the bearing’s lifespan by minimizing the risk of corrosion-related damage.

  • Extended Bearing Life:

Seals and shields contribute to the overall longevity of the bearing by reducing wear and damage caused by contaminants. They help maintain a clean internal environment, which promotes proper rolling contact and minimizes the risk of premature failure.

  • Enhanced Performance in Harsh Environments:

In applications exposed to harsh conditions, such as outdoor machinery or industrial settings, seals and shields are vital. They protect bearings from abrasive particles, chemicals, and extreme temperatures, ensuring reliable performance despite challenging conditions.

  • Noise and Vibration Reduction:

Seals and shields can help reduce noise and vibration generated by the bearing. They provide additional damping and stability, contributing to smoother operation and enhanced user comfort in noise-sensitive applications.

  • Customized Protection:

Manufacturers offer a variety of seal and shield designs to suit different application requirements. Some seals provide higher levels of protection against contamination, while others are designed for high-speed or high-temperature environments.

  • Trade-Offs:

While seals and shields offer significant benefits, they can also introduce some friction due to contact with the bearing’s inner or outer ring. Engineers must balance the level of protection with the desired operating characteristics, considering factors like friction, speed, and environmental conditions.

Overall, seals and shields play a vital role in maintaining the integrity and performance of ball bearings. By effectively preventing contaminants from entering and preserving lubrication, they ensure the smooth and reliable operation of machinery and equipment in a wide range of applications.

ball bearing

How do Ball Bearings Differ from Other Types of Bearings like Roller Bearings?

Ball bearings and roller bearings are two common types of rolling-element bearings, each with distinct designs and characteristics. Here’s a comparison of ball bearings and roller bearings:

  • Design:

Ball Bearings: Ball bearings use spherical balls to separate and reduce friction between the bearing’s inner and outer rings. The balls enable rolling motion and smooth contact, minimizing friction.

Roller Bearings: Roller bearings, as the name suggests, use cylindrical or tapered rollers instead of balls. These rollers have larger contact areas, distributing loads over a broader surface.

  • Friction and Efficiency:

Ball Bearings: Due to the point contact between the balls and the rings, ball bearings have lower friction and are more efficient at high speeds.

Roller Bearings: Roller bearings have a larger contact area, resulting in slightly higher friction compared to ball bearings. They are more suitable for heavy-load applications where efficiency is prioritized over high speeds.

  • Load Capacity:

Ball Bearings: Ball bearings excel at handling light to moderate loads in both radial and axial directions. They are commonly used in applications where smooth rotation and low friction are important.

Roller Bearings: Roller bearings have a higher load-carrying capacity than ball bearings. They can support heavier radial and axial loads and are preferred for applications with significant loads or impact forces.

  • Variability:

Ball Bearings: Ball bearings come in various designs, including deep groove, angular contact, and thrust ball bearings, each suitable for different applications.

Roller Bearings: Roller bearings have diverse types, including cylindrical, spherical, tapered, and needle roller bearings, each optimized for specific load and motion requirements.

  • Speed Capability:

Ball Bearings: The reduced friction in ball bearings makes them suitable for high-speed applications, such as electric motors and precision machinery.

Roller Bearings: Roller bearings can handle higher loads but are generally better suited for moderate to low speeds due to slightly higher friction.

  • Applications:

Ball Bearings: Ball bearings are used in applications where smooth motion, low friction, and moderate loads are essential, such as electric fans, bicycles, and some automotive components.

Roller Bearings: Roller bearings find applications in heavy machinery, construction equipment, automotive transmissions, and conveyor systems, where heavier loads and durability are crucial.

In summary, ball bearings and roller bearings differ in their design, friction characteristics, load capacities, speed capabilities, and applications. The choice between them depends on the specific requirements of the machinery and the type of loads and forces involved.

China wholesaler Radial Rulman Gcr15 SUS440 95cr18 SUS420 7200 7201 7202 7203 7204 7205 7206 2RS Zz Bm B AC C Precision Single Row / Double Row Angular Contact Ball Bearings.   bearing blockChina wholesaler Radial Rulman Gcr15 SUS440 95cr18 SUS420 7200 7201 7202 7203 7204 7205 7206 2RS Zz Bm B AC C Precision Single Row / Double Row Angular Contact Ball Bearings.   bearing block
editor by CX 2024-04-03